

TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

Mathematical Methods in Physics 2

by

Dr. Adam Badra Cahaya

Undergraduate Program in Physics Faculty of Mathematics and Natural Sciences Universitas Indonesia Depok August 2020

UNIVERSITAS INDONESIA FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICS UNDERGRADUATE STUDY PROGRAM

TEACHING INSTRUCTIONAL DESIGN								
Course Name	Mathematical Methods in Physics 2	Credit(s)	Prerequisite course(s)	Requisite for course(s)	Integration Between Other Courses			
Course Code	SCPH602111			Classical				
Relation to Curriculum	Compulsory Course			Mechanics,				
Semester	3 rd		Calculust 2, Mathematical	Computational				
Lecturer(s)		Methods in Physics 1	Physics, Quantum Physics 1, Statistical Physics					
After finishing this lecture, if students are required to solve physics problems related to the function of complex variables analytically, students are able to systematically and optimally perform analytical calculations by applying mathematical methods in the form of complex variable functions, including complex functions, Cauchy-Riemann theorem, Laurent series. , Cauchy contour integral, residue theorem, conformal mapping, Fourier series and coefficients, Dirichlet condition, Parseval theorem, Fourier transforms, Euler's equation in calculus of variation, brachistochrone, geodesic, minimum area, Hamilton principle (minimum action principle), Euler-Lagrange equation with constraints								

TEL CHING NICEPICALLA DECICAL

Program Learning Outcome (PL	Program Learning Outcome (PLO)								
PLO-2	Apply mathematical methods to solve physics problems analytically and computationally								
PLO-4	Formulating problems and solving Physics and its application, as well as interdisciplinary problems related to science and mathematics clumps critically, creatively, and innovatively								
Course Learning Outcome (CLO									
CLO-1	After completing this course, students are able to systematically and optimally analyze physics problems using mathematical methods in the form of complex variable functions, Fourier series, and calculus of variations. (C4)								
Sub-CLO(s)									
Sub-CLO 1	Able to explain (C2) theorems in the integral of complex variable functions								
Sub-CLO 2	Able to explain (C2) the Euler-Lagrange equation in the calculus of variations								
Sub-CLO 3	Able to apply (C3) complex variable function theorems in contour integral computation								
Sub-CLO 4	Able to apply (C3) calculus of variations in physics problems								
Sub-CLO 5	Able to analyze (C4) Fourier transforms with theorems in the contour integral of complex variable functions								
Sub-CLO 6	Able to analyze (C4) physics problems with the calculus of variations								
Study Materials	 Complex Function Cauchy – Rieman Theorrm Laurent Series Cauchy Contour Integral Residue Theorm Conformal Mapping Fourier Series and Coefficients Dirichlet condition, Parseval theorem, 								

	- Fourier Transform,
	- Euler's Equation in the Calculus of Variations,
	- Brachistochrone
	- Geodesic
	- Minimum Area
	- Hamilton Principle (Principle of Minimum Action),
	- Euler-Lagrange Equations with Constraints.
	1. Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas)
Reading List	2. Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)

I. Teaching Plan

Week	Sub-	Sub-Study MaterialsCLO[with reference]	Teaching Method	Learning Experiences		Achievement icator	Sub-CLO Weight on
	CLO		[with est. time]	(*O-E-F)	General	Specific	Course (%)
1	1	Review of complex numbers and complex functions [Reference] Chapter 14 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas) Chapter 6 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video conference : 100 minutes	Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS Exercise (30%): Students discuss character and application of functions and formulas through discussion forums. Feedback (10%) : Lecturers provide responses to the results of discussions and questions and answers via video conferencing	Students can analyze the characteristic of Gamma functions	Students are able to apply the Gamma function in solving integrals	15 %
2	1	Cauchy – Rieman Theorrm [Reference]	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video	Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS	Students can analyze the characteristic of the Beta function and	Students are able to apply the Beta function and the Stirling formula in	15 %

		Chapter 14 Mathematical	conference : 100		the Stirling	solving	
		Methods in the Physical	minutes	Exercise (30%):	formula	integrals	
		Sciences, 3rd Ed (Mary L Boas)		Students discuss character			
		Chapter 6 Mathematical		and application of			
		Methods for Physicists, 6th Ed		functions and formulas			
		(George B. Arfken dan Hans J. Weber)		through discussion forums.			
		Weber		Feedback (10%) :			
				Lecturers provide			
				responses to the results of			
				discussions and questions			
				and answers via video			
				conferencing			
		Cauchy Contour Integral	Interactif Lecture,	Orientation (30%):	Students can	Students are	15 %
			think pair share,	Before the class session,	analyze the	able to apply	
		[Reference]	self-study	students watch a video of	nature of the	the Legendre	
		Chapter 14 Mathematical	Discussion in forum	inheritance and the	Legendre	generator	
		Methods in the Physical Sciences, 3rd Ed (Mary L Boas)	and lecture <i>video</i>	application of functions in	generator	function in	
		Sciences, Sid Ed (Mary E Boas)	conference : 100	EMAS	function	solving physics	
		Chapter 6 Mathematical	minutes	Exercise (30%):		problems	
3	1	Methods for Physicists, 6th Ed		Students discuss character			
		(George B. Arfken dan Hans J.		and application of			
		Weber)		functions and formulas			
				through discussion forums.			
				anough discussion forums.			
				Feedback (10%) :			
				Lecturers provide			
				responses to the results of			

4	1	Laurent Series [Reference] Chapter 14 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas) Chapter 6 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video conference : 100 minutes	discussions and questions and answers via video conferencing Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS Exercise (30%): Students discuss character and application of functions and formulas through discussion forums. Feedback (10%) : Lecturers provide	Students can analyze the properties of the Legendre series	Students are able to apply the Legendre series in solving physics problems	15 %
				responses to the results of discussions and questions and answers via video conferencing	~		
5	3	Residue Theorem [Reference] Chapter 14 Mathematical Methods in the Physical Sciences 3rd Ed (Mary L Boas)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video	Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in	Students can analyze series solutions of differential equations	Students are able to apply the Bessel series, in solving differential	20 %
		1		application of functions in EMAS	equations	,	

		Chapter 7 Mathematical	conference : 100	Exercise (30%):			
		Methods for Physicists, 6th Ed	minutes	Students discuss character			
		(George B. Arfken dan Hans J.		and application of			
		Weber)		functions and formulas			
				through discussion forums.			
				Feedback (10%) :			
				Lecturers provide			
				responses to the results of			
				discussions and questions			
				and answers via video			
				conferencing			
		Application of Residue	Interactif Lecture,	Orientation (30%):	Students can	Students are	20 %
		Theorem	think pair share,	Before the class session,	analyze series	able to apply	
			self-study	students watch a video of	solutions of	Bessel's	
		[Reference]		inheritance and the	differential	function in	
		Chapter 14 Mathematical	Discussion in forum	application of functions in	equations	solving	
		Methods in the Physical	and lecture <i>video</i> <i>conference</i> : 100	EMAS		differential	
		Sciences, 3rd Ed (Mary L Boas)	minutes			equations	
		Chapter 7 Mathematical	minutes	Exercise (30%):			
6	3	Methods for Physicists, 6th Ed		Students discuss character			
		(George B. Arfken dan Hans J.		and application of			
		Weber)		functions and formulas			
				through discussion forums.			
				Feedback (10%) :			
				Lecturers provide			
				responses to the results of			
				discussions and questions			

7	3	Conformal Mapping [Reference] Chapter 14 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas) Chapter 6 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video conference : 100 minutes	and answers via video conferencing Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS Exercise (30%): Students discuss character and application of functions and formulas through discussion forums. Feedback (10%) : Lecturers provide responses to the results of discussions and questions and answers via video conferencing	Students can analyze series solutions of differential equations	Students are able to apply Hermite and Laguerre functions in solving differential equations	20 %
8			<u> </u>	Mid Term Exam	I		
9	5	Fourier Series and Coefficients [Reference]	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video	Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS	Students can analyze the form of partial differential equations	Students are able to explain physics problems in partial differential equations	30 %

	Chapter 7 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas) Chapter 14 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)	<i>conference</i> : 100 minutes	Exercise (30%): Students discuss character and application of functions and formulas through discussion forums. Feedback (10%) : Lecturers provide responses to the results of discussions and questions and answers via video conferencing			
10 5	Dirichlet condition, Form Complex for Fourier Series [Reference] Chapter 7 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas) Chapter 14 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video conference : 100 minutes	Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS Exercise (30%): Students discuss character and application of functions and formulas through discussion forums. Feedback (10%) : Lecturers provide responses to the results of discussions and questions	Students can analyze the form of partial differential equations	Students are able to explain physics problems in partial differential equations	30 %

				and answers via video			
11	5	Parseval Theorem, Fourier Transform[Reference] Chapter 7 and 15 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas)Chapter 15 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video conference : 100 minutes	conferencingOrientation (30%):Before the class session,students watch a video ofinheritance and theapplication of functions inEMASExercise (30%):Students discuss characterand application offunctions and formulasthrough discussion forums.Feedback (10%) :Lecturers provideresponses to the results ofdiscussions and questionsand answers via videoconferencing	Students can analyze the form of 1D partial differential equations	Students are able to apply partial differential equation solutions to 1D physics problems	30 %
12	2	Introduce Calculus Variation Euler Equation [Reference] Chapter 9 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video conference : 100 minutes	Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS Exercise (30%):	Students can analyze the form of 2D partial differential equations	Students are able to apply partial differential equation solutions to 2D physics problems	30 %

		Chapter 17 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)		Students discuss character and application of functions and formulas through discussion forums.			
				Feedback (10%) : Lecturers provide responses to the results of discussions and questions and answers via video conferencing			
13	2, 4	Application of Euler Equation : Braschistochrone, Geodesic, Minimum Area [Reference] Chapter 9 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas) Chapter 17 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video conference : 100 minutes	Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS Exercise (30%): Students discuss character and application of functions and formulas through discussion forums. Feedback (10%) :	Students can analyze the form of 3D partial differential equations	Students are able to apply partial differential equation solutions to 3D physics problems	30 %
				Lecturers provide responses to the results of discussions and questions			

				and answers via video			
				conferencing			
14	4, 6	Hamilton : Euler – Lagrange Equation [Reference] Chapter 9 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas) Chapter 17 Mathematical Methods for Physicists, 6th Ed (George B. Arfken dan Hans J. Weber)	Interactif Lecture, think pair share, self-study Discussion in forum and lecture video conference : 100 minutes	Orientation (30%): Before the class session, students watch a video of inheritance and the application of functions in EMAS Exercise (30%): Students discuss character and application of functions and formulas through discussion forums. Feedback (10%) : Lecturers provide responses to the results of	Students can analyze the nature of the Poisson equation	Students are able to apply the Green function in solving physics problems	20 %
		Hamilton : Euler – Lagrange Equation with Constraints	Interactif Lecture, think pair share,	discussions and questions and answers via video conferencing Orientation (30%): Before the class session,	Students can analyze the	Students are able to apply	20 %
15	4, 6	[Reference] Chapter 9 Mathematical Methods in the Physical Sciences, 3rd Ed (Mary L Boas)	<i>self-study</i> Discussion in forum and lecture <i>video</i> <i>conference</i> : 100 minutes	students watch a video of inheritance and the application of functions in EMAS Exercise (30%):	transformation of functions	functional transformations to differential equations	

	Chapter 17 Mathematical	Students discuss character			
	Methods for Physicists, 6th Ed	and application of			
	(George B. Arfken dan Hans J.	functions and formulas			
	Weber)	through discussion forums.			
		Feedback (10%) :			
		Lecturers provide			
		responses to the results of			
		discussions and questions			
		and answers via video			
		conferencing			
16	Final Exam				

II. Assignment Design

Week	Assignment Name	Sub- CLOs	Assignment	Scope	Working Procedure	Deadline	Outcome
2	Individual Assignment 1	1, 3	Essay	Cauchy – Teimann Theorem	Individual Homework	1 week	Curve and file pdf
4	Individual Assignment 2	5	Essay	Laurent Series and Residue Theorm on Cauchy Contour Integral	Individual Homework	1 week	File pdf
7	Individual Assignment 3	1, 3, 5	Presentation	Application of contour integrals to physics problems	Group Homework	1 week	Slide ppt
10	Group Assignment 1	2, 4	Essay	Fourier Transform	Individual Homework	1 week	Curve and file pdf
13	Group Assignment 1	2, 4, 6	Presentation	Eulure Equation	Eulure Equation Group Homework		File pdf
15	Individual Assignment 4	6	Essay	Euler – Lagrange Equation	Individual Homework	1 week	Slide ppt

Evaluation Type	Sub-CLO	Assessment Type	Frequency	Evaluation Weight (%)
Individual Assignment	1,3, 4, 6	Written Test on EMAS	4x	30
Group Assignment	2, 4, 5	Presentation	2x	20
Mid – Term Exam	1, 3	Synchronous Exam and Submission via EMAS	1x	25
Final Exam	2, 4, 5, 6	Synchronous Exam and Submission via EMAS	1x	25
	100			

IV. Rubric(s)

This rubric is used as a guideline for assessing or giving levels of student performance results. a rubric usually consists of assessment criteria that include the dimensions / aspects that are assessed based on indicators of learning achievement. This assessment rubric is useful for clarifying the basics and aspects of the assessment so that students and lecturers can be guided by the same thing regarding the expected performance demands. Lecturers can choose the type of rubric according to the assessment given.

Score	Grade	Equivalent
85 - 100	А	4.00
80 - < 85	A-	3.70
75 - < 80	B+	3.30
70 - < 75	В	3.00
65 - < 70	B-	2.70
60 - < 65	C+	2.30
55 - < 60	С	2.00
40 - < 50	D	1.00
< 40	Е	0.00

A. Conversion of the student's final score

B. Assessment rubric: project report and papers

Criteria	A (90)	B (70)	C (60)	D (50)
Mathematical	Students are able to	Students are able to find the right	Students find that the symmetry is	Students are not able to find
Formulation	explain correct differential equations	symmetry but the written differential equations are not quite right	not quite right and the differential equation is written incorrectly	the wrong symmetry and the written differential equations are incorrect
Determination of Boundary conditions	Students are able to write the exact boundary conditions	Students are able to find the right symmetry but the boundary conditions that are written aren't	Students find that the symmetry is not quite right and the boundary conditions are written incorrectly	Students are not able to find the right symmetry and the boundary conditions are
				-

		quite right		written incorrectly
Contour Selection	Students are able to choose equations and apply the right theorems	Students are able to choose equations but the theorem applied is not quite right	Students choose equations that aren't quite right and the theorem is applied incorrectly	Students do not choose the right equation and the theorem is applied incorrectly