

TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

ANGULAR MOMENTUM THEORY

by

Prof. Dr. Drs. Terry Mart

Undergraduate Program in Physics Faculty of Mathematics and Natural Sciences Universitas Indonesia Depok September 2020

UNIVERSITAS INDONESIA FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICS UNDERGRADUATE STUDY PROGRAM

TEACHING INSTRUCTIONAL DESIGN									
Course Name	Angular Momentum Theory	Credit(s)	Prerequisite course(s)	Requisite for course(s)	Integration Between Other Courses				
Course Code	SCPH604702								
Relation to Curriculum	Elective Course	4	Quantum Physics 2	-					
Semester	7	4			-				
Lecturer(s)	Prof. Dr. Drs. Terry Mart								
Course Description	The Angular Momentum Theory course is given on the 7 th term, comprising of the definition of angular momentum, commutative properties, and eigenvalue commutators, the summation of two angular momenta, the definition of the Clebsch-Gordan (CG) coefficient, relations related to the CG coefficient, calculation of the CG coefficient, the 3-j, 6-j, and 9-j symbols, rotation operators and their orthogonal properties, spherical harmonic functions, irreducible tensors, the Wigner-Eckart theorem, Racah coefficients, Maxwell's equations and multipole fields in spherical coordinates, static interactions and spin ½ interactions, and applications for alpha particle emission by the nucleus and nuclear systems.								

Program Learning Outcome (PL	0)
PLO-1	Applying angular momentum theory concepts in general physics problems.
PLO-1.1	Formulating the problems in and solutions to mechanics physics, electrodynamics, electricity and magnetism.
PLO-2.1	Deriving formulas specific to the problem at hand in angular momentum.
Course Learning Outcome (CLO)
CLO-1	After the completion of this course, students will be able to derive relations in angular momentum theory and apply them in problem within physics that includes quantum mechanics, nuclear physics, particle physics, and few-body physics. (C3)
Sub-CLO(s)	
Sub-CLO 1	Derive the fundamental principles used in angular momentum theory. (C3)
Sub-CLO 2	Derive and calculate angular momentum operators. (C3)
Sub-CLO 3	Derive the coupling of two angular momenta. (C3)
Sub-CLO 4	Calculate and test transformation characteristics due to rotation. (C3, C4)
Sub-CLO 5	Derive and apply the Wigner-Eckart theorem. (C3)
Sub-CLO 6	Derive Racah coefficients and demonstrate their basic application. (C3)
Sub-CLO 7	Derive Maxwell's equations in spherical coordinates. (C3)
Sub-CLO 8	Apply formulations in angular momentum theory in solving problems within physics. (C3)
Study Materials	 Introduction Hermite operators Unitary transformation Diagonalization of operators Unitary operators in exponential form Definition of angular momentum operators

	– Orbital angular momentum
	 Commutative properties of angular momentum operators Eigenvalue of an option momentum operators
	 Eigenvalue of angular momentum operators
	 Physical interpretation of angular momentum
	 Definition of the Clebsch-Gordan coefficient
	 Symmetry relation for the Clebsch-Gordan coefficient
	 Calculation of the Clebsch-Gordan coefficient
	 Matrix representation of rotation operators
	 Clebsch-Gordan coefficient series
	 Determining rotation matrices
	 Orthogonality and rotation matrix normalization
	 Definition of irreducible tensor operators
	 Racah coefficients
	– Wigner-Eckart theorem
	– Projection theorem
	 Coupling of three angular momenta
	 Characteristics of Racah coefficients
	 Basic applications of Racah coefficients
	 Applications in electromagnetic fields
	 Applications in static interactions
	 Applications for particles with spin-¹/₂
	 Applications in polarized nuclei
	 Applications in nuclear reactions
	 Applications in systems with identical particles
	1. M. E. Rose, Elementary Theory of Angular Momentum, Dover Books on Physics, 2011.
Reading List	2. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, 1996.
0	3. A. de-Shalit and I. Talmi, Nuclear Shell Theory, Dover Publications, 2004

I. Teaching Plan

Week	Sub-CLO	Sub-CLO Study Materials	Teaching Method	Learning Experiences	Sub-CLO Achievement Indicator		Sub-CLO Weight on
,, con		[with reference]	[with est. time]	(*O-E-F)	General	Specific	Course (%)
1	Sub-CLO 1 Derive the fundamental principles used in angular momentum theory. (C3)	 Hermite operators Unitary transformation 	Face-to-face lecture (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes) 2. Doing problem sets in the book. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Reading study materials and deriving formulas from the textbook. Asynchronous: Problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can derive the fundamental principles used in angular momentum theory.	Students can apply Hermite operators and unitary transformations in solving problems within angular momentum.	50%

2	Sub-CLO 1 Derive the fundamental principles used in angular momentum theory. (C3)	 Diagonalization of operators Unitary operators in exponential form 	 Face-to-face lecture (50 minutes) Structured individual learning Reading study materials and deriving formulas from the textbook. (50 minutes) Doing problem sets in the book. (50 minutes) 	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can explain the fundamental principles used in angular momentum theory.	Students can diagonalize operators and derive unitary operators into exponential form.	50%
3	Sub-CLO 2 Derive and calculate angular momentum operators. (C3)	 Definition of angular momentum operators Orbital angular momentum 	 Face-to-face lecture (50 minutes) Structured individual learning Reading study materials and deriving formulas from the textbook. (50 minutes) 	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to	After the synchronous lecture, reading study materials, and doing problem sets, students can derive and calculate angular momentum operators.	Students can apply angular momentum and orbital angular momentum operators in solving problems within angular momentum.	50%

			2. Doing problem sets in the book.(50 minutes)	answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture			
4	Sub-CLO 2 Derive and calculate angular momentum operators. (C3)	 Commutative properties of angular momentum operators Eigenvalue of angular momentum operators 	Face-to-face lecture (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes) 2. Doing problem sets in the book. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can derive and calculate angular momentum operators.	Students can apply the commutative properties of operators in solving problems within angular momentum.	50%

5	Sub-CLO 3 Derive the coupling of two angular momenta. (C3)	 Physical interpretation of angular momentum Definition of the Clebsch- Gordan coefficient 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes) 2. Doing problem sets in the book. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can derive the coupling of two angular momenta.	Students can explain the physical interpretation of angular momentum and the definition of the Clebsch- Gordan coefficient.	50%
6	Sub-CLO 3 Derive the coupling of two angular momenta. (C3)	 Calculation of the Clebsch-Gordan coefficient Matrix representation of rotation operators 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to	After the synchronous lecture, reading study materials, and doing problem sets, students can derive the coupling of two angular momenta.	Students can calculate the Clebsch-Gordan coefficient and the matrix representation of rotation operators.	50%

	2. Doing problem sets in the book.(50 minutes)	answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture			
7 Sub-CLO 4 Calculate and test transformatic characteristic due to rotation. (C3, C4)	 Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes) 2. Doing problem sets in the book. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can calculate and test transformation characteristics due to rotation.	Students can calculate the Clebsch-Gordan coefficient and apply symmetry relations in systems with angular momentum.	50%

8	Sub-CLO 4 Calculate and test transformation characteristics due to rotation. (C3, C4)	 Matrix representation of rotation operators Clebsch-Gordan coefficient series 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes) 2. Doing problem sets in the book. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can calculate and test transformation characteristics due to rotation.	Students can apply Hermite and unitary transformations in solving problems within angular momentum.	50%
9	Sub-CLO 5 Derive and apply the Wigner- Eckart theorem. (C3)	 Determining rotation matrices Orthogonality and rotation matrix normalization 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to	After the synchronous lecture, reading study materials, and doing problem sets, students can derive and apply the Wigner- Eckart theorem.	Students can determine the rotation matrix and apply orthogonality and rotation matrix normalization.	50%

			2. Doing problem sets in the book.(50 minutes)	answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture			
10	Sub-CLO 5 Derive and apply the Wigner- Eckart theorem. (C3)	 Definition of irreducible tensor operators Racah coefficients Wigner-Eckart theorem 	 Student presentation and discussion (50 minutes) Structured individual learning Reading study materials and deriving formulas from the textbook. (50 minutes) Doing problem sets in the book. (50 minutes) 	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can derive and apply the Wigner- Eckart theorem.	Students can apply the definition for irreducible tensor operators, Racah coefficients, and the Wigner- Eckart theorem in systems with angular momentum.	50%

11	Sub-CLO 6 Derive Racah coefficients and demonstrate their basic application. (C3)	 Projection theorem Coupling of three angular momenta 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes) 2. Doing problem sets in the book. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can derive Racah coefficients and demonstrate their basic application.	Students can apply the projection theorem and coupling of three angular momenta.	50%
12	Sub-CLO 6 Derive Racah coefficients and demonstrate their basic application. (C3)	 Characteristics of Racah coefficients Basic applications of Racah coefficients 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to	After the synchronous lecture, reading study materials, and doing problem sets, students can derive Racah coefficients and demonstrate	Students can apply the characteristics of Racah coefficients.	50%

			2. Doing problem sets in the book.(50 minutes)	answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	their basic application.		
13	Sub-CLO 7 Derive Maxwell's equations in spherical coordinates. (C3)	 Applications in electromagnetic fields 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes) 2. Doing problem sets in the book. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can derive Maxwell's equations in spherical coordinates.	Students can apply Maxwell's equations to electromagnetic fields.	50%

14	Sub-CLO 7 Derive Maxwell's equations in spherical coordinates. (C3)	 Applications in static interactions Applications for particles with spin-½ 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes) 2. Doing problem sets in the book. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can derive Maxwell's equations in spherical coordinates.	Students can apply Maxwell's equations in spherical form on static interactions and particles with spin- ¹ / ₂ .	50%
15	Sub-CLO 8 Apply formulations in angular momentum theory in solving problems within physics. (C3)	 Applications in polarized nuclei 	Student presentation and discussion (50 minutes) Structured individual learning 1. Reading study materials and deriving formulas from the textbook. (50 minutes)	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to	After the synchronous lecture, reading study materials, and doing problem sets, students can apply formulations in angular momentum	Students can apply formulations in angular momentum theory on polarized nuclei	50%

			2. Doing problem sets in the book.(50 minutes)	answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	theory in solving problems within physics.		
16 Ap fo: in me the so pr wi	ub-CLO 8 pply prmulations angular aomentum eory in plving roblems ithin hysics. (C3)	 Applications in nuclear reactions Applications in systems with identical particles 	 Student presentation and discussion (50 minutes) Structured individual learning Reading study materials and deriving formulas from the textbook. (50 minutes) Doing problem sets in the book. (50 minutes) 	O (40%) Synchronous: Face-to-face lecture via MS Teams. E (30%) Asynchronous: Students find reference material to answer questions in the problem set. F (30%) Synchronous: Question and answer session during the lecture	After the synchronous lecture, reading study materials, and doing problem sets, students can apply formulations in angular momentum theory in solving problems within physics.	Students can apply formulations in angular momentum theory on nuclear reactions and systems with identical particles.	50%

II. Assignment Design

Week	Assignment Name	Sub-	Assignment	Scope	Working	Deadline	Outcome
WCCK	Assignment Manie	CLOs	Assignment	-	Procedure	Deaume	Outcome
1	Assignment 1	1	Problem set	- Hermite operators	Individual	1 week	Answer uploaded
1	Assignment	1	i toblem set	- Unitary transformation	Homework	1 WCCK	to EMAS
2	Assignment 2	1	Problem set	 Diagonalization of operators Unitary operators in exponential form 	Individual Homework	1 week	Answer uploaded to EMAS
3	Assignment 3	2	Problem set	 Definition of angular momentum operators Orbital angular momentum 	Individual Homework	1 week	Answer uploaded to EMAS
4	Assignment 4	2	Problem set	 Commutative properties of angular momentum operators Eigenvalue of angular momentum operators 	Individual Homework	1 week	Answer uploaded to EMAS
5	Assignment 5	3	Problem set	 Physical interpretation of angular momentum Definition of the Clebsch-Gordan coefficient 	Individual Homework	1 week	Answer uploaded to EMAS
6	Assignment 6	3	Problem set	 Calculation of the Clebsch-Gordan coefficient Matrix representation of rotation operators 	Individual Homework	1 week	Answer uploaded to EMAS

7	Assignment 7	4	Problem set	 Symmetry relation for the Clebsch-Gordan coefficient Calculation of the Clebsch-Gordan coefficient 	Individual Homework	1 week	Answer uploaded to EMAS
8	Assignment 8	4	Problem set	 Matrix representation of rotation operators Clebsch-Gordan coefficient series 	Individual Homework	1 week	Answer uploaded to EMAS
9	Assignment 9	5	Problem set	 Determining rotation matrices Orthogonality and rotation matrix normalization 	Individual Homework	1 week	Answer uploaded to EMAS
10	Assignment 10	5	Problem set	 Definition of irreducible tensor operators Racah coefficients Wigner-Eckart theorem 	Individual Homework	1 week	Answer uploaded to EMAS
11	Assignment 11	6	Problem set	 Projection theorem Coupling of three angular momenta 	Individual Homework	1 week	Answer uploaded to EMAS
12	Assignment 12	6	Problem set	 Characteristics of Racah coefficients Basic applications of Racah coefficients 	Individual Homework	1 week	Answer uploaded to EMAS

13	Assignment 13	7	Problem set	- Applications in electromagnetic fields	Individual Homework	1 week	Answer uploaded to EMAS
14	Assignment 14	7	Problem set	 Applications in static interactions Applications for particles with spin-¹/₂ 	Individual Homework	1 week	Answer uploaded to EMAS
15	Assignment 15	8	Problem set	 Applications in polarized nuclei 	Individual Homework	1 week	Answer uploaded to EMAS
16	Assignment 16	8	Problem set	 Applications in nuclear reactions Applications in systems with identical particles 	Individual Homework	1 week	Answer uploaded to EMAS

III. Assessment Criteria (Learning Outcome Evaluation)

Evaluation Type	Sub-CLO	Assessment Type	Frequency	Evaluation Weight (%)
Presentation and Discussion	3, 4, 5, 6, 7, 8	 Presentation skill, Discussion skill, Mastery over the material 	1x	50
Weekly Assignment	1, 2, 3, 4, 5, 6, 7, 8	Homework	16x	50
			Total:	100

IV. Rubric(s)

This rubric is used as a guideline for assessing or giving levels of student performance results. a rubric usually consists of assessment criteria that include the dimensions / aspects that are assessed based on indicators of learning achievement. This assessment rubric is useful for clarifying the basics and aspects of the assessment so that students and lecturers can be guided by the same thing regarding the expected performance demands. Lecturers can choose the type of rubric according to the assessment given.

Score	Grade	Equivalent
85 - 100	А	4.00
80 - < 85	A-	3.70
75 - < 80	B+	3.30
70 - < 75	В	3.00
65 - < 70	B-	2.70
60 - < 65	C+	2.30
55 - < 60	С	2.00
40 - < 50	D	1.00
< 40	E	0.00

A. Conversion of the student's final score

B. Assessment rubric: project report and papers

Criteria	Score	Indicator		
	4	Contains: (1) background for the preparation of the report, (2) problem identification / gap analysis, (3)		
	4	questions (4) objectives, and (5) citing relevant and current references		
Introduction	3	Loads the goal and 3 of the other 4 items		
Introduction	2	Loading objective and 2 of the other 4 items		
	1	Does not contain the purpose of preparing the report, there are one or more than 4 other items		
	0	Does not contain objectives and 4 other items		
Content	4	Structured & cohesive, conducts a comprehensive literature review and performs a complete critical analysis		

	3	Structured, conduct a comprehensive literature review and complete critical analysis
	2	Less structured, conducting literature reviews but less comprehensive and carrying out simple critical analysis
	1	Unstructured & cohesive, review of literature is not comprehensive and does not contain critical analysis
	4	Related to the implementation of tasks and there are suggestions for feasible improvements to the next assignment
	3	It is related to the implementation of tasks and there are suggestions for improvement of the next assignment but it is not feasible
	2	Regarding the implementation of the task but no suggestions
	1	Not related to the execution of duties and no suggestions
Conclusion	4	The report is neat and attractive, complete with cover and photo / picture
Conclusion	3	The report is neat and attractive, with a cover or photo / image
	2	The report includes a cover or photo / image but is not neat or attractive
	1	The report is not neat and unattractive, does not have a cover and photo / image
	4	Easy to understand, correct word choice, and spelling all right
	3	Easy to understand, correct word choice, some misspellings
	2	Less understandable, inaccurate word choice, and some misspellings
	1	It is not easy to understand, the choice of words is not quite right, and there are lots of misspellings