

TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

QUANTUM MECHANICS 2

by

Prof. Dr. Drs. Terry Mart

Undergraduate Program in Physics Faculty of Mathematics and Natural Sciences Universitas Indonesia Depok September 2020

PREFACE

The Quantum Mechanics 2 course is a 5th semester course for students who have finished the Quantum Mechanics 1 course. For 12 weeks students will receive lecture materials on the classical equation of motion for an electron under an electromagnetic field, the Schrödinger equation for an electron under an electromagnetic field, gauge transformation and minimal substitution, the effects of a constant magnetic field and its application on the normal Zeeman effect, the effects of a strong magnetic field by using the Schrödinger equation, the effects of a magnetic field on simple cases: Landau levels, Hall effect, and Aharanov-Bohm effect, harmonic oscillator operators in matrix form, orbital angular momentum operators in matrix form, spin angular momentum operators in matrix form, the magnetic moment of a particle with spin-1/2, paramagnetic resonance, the summation of two spins, the summation of spin-¹/₂ with orbital angular momentum, the summation of angular momenta and its application on cases involving identical particles, the Clebsch-Gordan coefficient, notation, and how to read coefficient values, the application of summing angular momenta on cases involving particle parity, perturbation theory for non-degenerate cases, perturbation theory for degenerate cases, the Stark effect, the degeneration of a hydrogen atom with n = 2 due to spin-orbit coupling, the anomalous Zeeman effect, hyperfine structures, the ionization energy of a Helium atom, the effects of the repulsive force between electrons, the impact of Pauli's exclusion principle, molecule orbitals, the expected energy value of an H₂ molecule, molecule rotational and vibrational energy, time-dependent perturbation theory, constant perturbation in timedependent perturbation theory, atom coupling with electromagnetic fields, phase space and calculation of matrix elements based on selection rules, scattering cross-sections, elastic and inelastic scattering, low energy cross-sections, the Breit-Wigner formula and S-wave scattering in cases involving a square well, formulation of the Born approximation, and scattering in general in cases involving identical particles.

It is hoped that after finishing the Quantum Mechanics 2 course students will be able to apply advanced concepts and formulations in quantum mechanics on related problems in physics, such as the interaction between charged particles and an electromagnetic field, perturbation in quantum systems, and particle scattering due to electromagnetic interaction.

Depok, September 2020

Prof. Dr. Drs. Terry Mart

I. General Information

1.	Name of Program / Study Level	:	Physics / Undergraduate
2.	Course Name	:	Quantum Mechanics 2
3.	Course Code	:	SCFI603116
4.	Semester	:	5
5.	Credit	:	3 credits
6.	Teaching Method(s)	:	Interactive lecture and discussion
7.	Prerequisite course(s)	:	Quantum Mechanics 1
8.	Requisite for course(s)	:	Relativistic Quantum Mechanics, Quantum Field Theory
9.	Integration Between Other Courses	:	-
10.	Lecturer(s)	:	Prof. Dr. Drs. Terry Mart
11.	Course Description	:	This course discusses the advanced concepts and formulations in quantum mechanics and trains students' capability in understanding and applying those concepts to related problems in physics, such as the interaction between charged particles and an electromagnetic field,

perturbation in quantum systems, and particle scattering due to electromagnetic

interaction.

3

II. Course Learning Outcome (CLO) and Sub-CLOs

A. CLO

After the completion of this course, students will be able to apply advanced concepts and formulations in quantum mechanics on related problems in physics, such as the interaction between charged particles and an electromagnetic field, perturbation in quantum systems, and particle scattering due to electromagnetic interaction.

B. Sub-CLO

After the completion of this course, students will be able to:

- 1. Calculate the effects of the interaction between an electron and an electromagnetic field (C3),
- 2. Derive operator representations in matrix form (C3),
- 3. Calculate the summation of angular momenta (C3),
- 4. Derive the formula for time-independent perturbation theory and analyze its applications (C3, C4),
- 5. Calculate several observables of a real Hydrogen atom (C3),
- 6. Analyze the characteristics of a Helium atom (C4),
- 7. Analyze simple molecules such as H2 Hydrogen molecules (C3),
- 8. Derive the formula for time-dependent perturbation theory and apply it in several cases in physics (C3),
- 9. Derive the general formula for scattering theory (C3).

III. Teaching Plan

Week	Sub-CLO	Study Materials	Teaching Method	Time Required	Learning Experiences (*O-E-F)	Sub-CLO Weight on Course (%)	Sub-CLO Achievement Indicator	References
1	1	 Introduction Classical equation of motion for an electron under an electromagnetic field Schrödinger equation for an electron under an electromagnetic field Gauge transformation and minimal substitution 	Face-to-face lecture, discussion, and Structured individual learning	3x50 minutes	40% O, 30% E, 30% F	50%	Students can derive and analyze the equation of motion for an electron under an electromagnetic field.	
2	1	 Effects of a constant magnetic field and its application on the normal Zeeman effect Effects of a strong magnetic field by using the Schrödinger equation Effects of a magnetic field on simple cases: Landau levels, Hall effect, and Aharanov- Bohm effect 	Face-to-face lecture, discussion, and structured individual learning	3x50 minutes	40% O, 30% E, 30% F	50%	Students can derive and analyze the effects of a constant magnetic field on the normal Zeeman effect, the effects of a strong magnetic field by using the Schrödinger equation, and the effects of a magnetic field on simple cases, such as Landau levels, Hall effect, and Aharanov- Bohm effect.	
3	2	Harmonic oscillator operator in matrix form	Face-to-face lecture, discussion, and	3x50 minutes	40% O, 30% E, 30% F	100%	Students can derive harmonic oscillator, orbital angular	

		 Orbital angular momentum operator in matrix form Spin angular momentum operator in matrix form Magnetic moment of a particle with spin-1/2 Paramagnetic resonance 	structured individual learning				momentum, and spin angular momentum operators in matrix form, the magnetic moment of a particle with spin- ¹ / ₂ , and apply them to cases involving paramagnetic resonance.
4	3	 Summation of two spins Summation of spin-¹/₂ with orbital angular momentum Summation of angular momenta and its application on cases involving identical particles 	Face-to-face lecture, discussion, and structured individual learning	3x50 minutes	40% O, 30% E, 30% F	50%	Students can calculate the summation of two spins, spin-1/2 with orbital angular momentum, and angular momenta along with its application on cases involving identical particles.
5	3	 Clebsch-Gordan coefficient, notation, and how to read coefficient values Application of summing angular momenta on cases involving particle parity 	Face-to-face lecture, discussion, and structured individual learning	3x50 minutes	40% O, 30% E, 30% F	50%	Students can calculate the Clebsch-Gordan coefficient use its notation and apply it.
6	4	• Perturbation theory for non-degenerate cases	Face-to-face lecture, discussion, and structured individual learning	3x50 minutes	40% O, 30% E, 30% F	50%	Students can calculate the Clebsch-Gordan coefficient use its notation and apply it.
7	4	Perturbation theory for degenerate casesStark effect	Face-to-face lecture, discussion, and	3x50 minutes	40% O, 30% E, 30% F	50%	Students can apply time-independent perturbation theory for

			structured				degenerate cases and	
			individual				analyze the Stark effect	
			learning					
8								
		Degeneration of a					Students can calculate	
		• Degeneration of a $hvdrogen atom with n =$	Face-to-face				the degeneration of a	
		2 due to spin-orbit	lecture,				Hydrogen atom with n	
0	5	coupling	discussion, and	2x50 minutos	4004 O 2004 E 2004 E	1000/	= 2 due to spin-orbit	
9		Anomalous Zeeman	structured	5x50 minutes	40% O, 30% E, 30% F	100%	coupling, analyze the	
		effect	individual				anomalous Zeeman	
		Hyperfine structure	learning				effect, and hyperfine	
							structures.	
							Students can calculate	
	6	• Ionization energy of a	Face-to-face lecture,		40% O, 30% E, 30% F	100%	the ionization energy of	
		Helium atom					a Helium atom, analyze	
10		 Effects of the repulsive force between electrons Impact of Pauli's exclusion principle 	discussion, and	250			the effects of the	
10			structured individual learning	5x50 minutes			repulsive force between	
							electrons, and the	
							impact of Pauli's	
							exclusion principle.	
			Ease to face				Students can calculate	
	7	Molecule orbitals	l'ace-to-face	3x50 minutes	40% O, 30% E, 30% F	100%	molecule orbitals, the	
		• Expected energy value	lecture,				expected energy value	
11		of an H2 molecule	discussion, and				of an H2 molecule, and	
		Molecule rotational and with notice all one super-	structured				the rotational and	
		vibrational energy					vibrational energy of a	
			learning				molecule.	
		Time dependent	Face-to-face					
		• I line-dependent perturbation theory	lecture,				Students can use time-	
10	8	 Constant perturbation in 	discussion, and	2.50 minutos	400/ O 200/ E 200/ E	500/	dependent perturbation	
12		time-dependent	structured	5x50 minutes	40% O, 30% E, 30% F	30%	theory and apply it for	
		perturbation theory	individual				constant perturbations.	
			learning					
12	8	• Atom coupling with	Face-to-face	3x50 minutos	400% O 300% E 200% E	500/	Students can apply	
15		electromagnetic fields	lecture,	5x50 minutes	4070 U, 3070 E, 3070 F	50%	time-dependent	

		• Phase space and	discussion, and				perturbation theory for	
		calculation of matrix	structured				cases with atom	
		elements based on	individual				coupling with	
		selection fules	learning				electromagnetic fields,	
							analyze phase space,	
							and calculate matrix	
							elements based on	
							selection rules.	
							Students can calculate	
		• Scattering cross-section	Face-to-face				scattering cross-	
	9	 Elastic and inelastic 	lecture,			50%	sections in general, in	
14		scattering	discussion, and	3x50 minutos	40% O 30% E 30% F		cases with elastic	
14		• Low energy cross-	structured	5x50 minutes	40/0 O, 30/0 L, 30/0 I		scattering and inelastic	
		section	individual				scattering, and the	
			learning				cross-section for low	
							energy.	
							Students can analyze	
		• Breit-Wigner formula and S-wave scattering in cases involving a square					the Breit-Wigner	
							formula and S-wave	
			Face-to-face				scattering for cases	
		well	lecture,				involving a square	
15	9	• Formulation of the Born	discussion, and	3x50 minutes	40% O 30% E 30% E	50%	well, derive the	
15		approximation	structured	5x50 minutes	40/0 O, 50/0 E, 50/0 F	5070	formulation for the	
		• Scattering in general in	individual				Born approximation	
		cases involving identical	learning				and apply scattering	
		particles					formulas in general for	
							cases involving	
							identical particles.	
16	Final Exam							

*) O : Orientation

E : Exercise

F : Feedback

References:

- 1. S. Gasiorowicz, Quantum Physics, John Wiley & Sons, Inc., 1996.
- 2. A. Goswami, Quantum Mechanics 2nd Ed., Wm. C. Brown Publishers, 1997.

IV. Assignment Design

Week	Assignment Name	Sub-CLO	Assignment	Scope	Working Procedure	Deadline	Outcome
1	Exercise 1	1	Problem set	 Introduction Classical equation of motion for an electron under an electromagnetic field Schrödinger equation for an electron under an electromagnetic field 	Individual homework	1 Week	Answer sheet
2	Exercise 2	1	Problem set	 Gauge transformation and minimal substitution Effects of a constant magnetic field and its application on the normal Zeeman effect Effects of a strong magnetic field by using the Schrödinger equation Effects of a magnetic field on simple cases: Landau levels, Hall effect, and Aharanov-Bohm effect 	Individual homework	1 Week	Answer sheet
3	Exercise 3	2	Problem set	 Harmonic oscillator operator in matrix form Orbital angular momentum operator in matrix form Spin angular momentum operator in matrix form Magnetic moment of a particle with spin-½ Paramagnetic resonance 	Individual homework	1 Week	Answer sheet
4	Exercise 4	2	Problem set	 Summation of two spins Summation of spin-½ with orbital angular momentum Summation of angular momenta and its application on cases involving identical particles Clebsch-Gordan coefficient, notation, and how to read coefficient values Application of summing angular momenta on cases involving particle parity 	Individual homework	1 Week	Answer sheet

5	Exercise 5	3	Problem set	 Perturbation theory for non-degenerate cases Perturbation theory for degenerate cases Stark effect Degeneration of a hydrogen atom with n = 2 due to spin-orbit coupling Anomalous Zeeman effect Hyperfine structure Ionization energy of a Helium atom Effects of the repulsive force between electrons Impact of Pauli's exclusion principle 	Individual homework	1 Week	Answer sheet
6	Exercise 6	3	Problem set	 Molecule orbitals Expected energy value of an H2 molecule Molecule rotational and vibrational energy 	Individual homework	1 Week	Answer sheet
7	Exercise 7	4	Problem set	 Time-dependent perturbation theory Constant perturbation in time-dependent perturbation theory Atom coupling with electromagnetic fields 	Individual homework	1 Week	Answer sheet
8	Exercise 8	4	Problem set	 Phase space and calculation of matrix elements based on selection rules Scattering cross-section 	Individual homework	1 Week	Answer sheet
9	Exercise 9	5	Problem set	 Elastic and inelastic scattering Low energy cross-section Breit-Wigner formula and S-wave scattering in cases involving a square well 	Individual homework	1 Week	Answer sheet
10	Exercise 10	5	Problem set	 Formulation of the Born approximation Scattering in general in cases involving identical particles 	Individual homework	1 Week	Answer sheet

Evaluation Type	Sub-CLO	Assessment Type Frequenc		Evaluation Weight (%)
Weekly Assignment	1, 2, 3, 4, 5, 6, 7, 8, 9	Homework	10	30
Midterm Exam	1, 2, 3, 4	Written exam	1	30
Final Exam	5, 6, 7, 8, 9	Written exam	1	40
	100			

V. Assessment Criteria (Learning Outcome Evaluation)

VI. Rubric

A. Criteria of Presentation Score

Score	Presentation Delivery
85.00	Group is able to deliver the explanation logically, fluently, and punctual and be
83-90	able to answer the questions from other students and lecturer
	Group is able to deliver the explanation logically and fluently and be able to
75-84	answer the questions from other students and lecturer, but be less punctual on
	delivering the explanation
65 74	Group is able to deliver the explanation fluently, but be less able to deliver the
03-74	reasoning logic of the explanation
55 64	Group is less able to deliver the explanation fluently and punctual and be less
55-04	able to deliver the reasoning logic of the explanation
<55	

B. Criteria of Assignment and Exam Scores

Score	Answer Quality
100	Answer is very precise and all the concept and main component are explained
100	completely
76-99	Answer is fairly precise and the concept and main component are explained fairly
70-99	complete
51 75	Answer is less precise and the concept and main component are explained less
51-75	complete
26.50	Answer is poorly precise and the concept and main component are explained
20-30	poorly complete
<25	Answer is wrong