

TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

DIGITAL SIGNAL PROCESSING

by

Adhi Harmoko Saputro, Ph.D.

Undergraduate Program in Physics Faculty of Mathematics and Natural Sciences Universitas Indonesia

Depok

November 2016

PREFACE

The Teaching Instructional Design (BRP) for the Digital Signal Processing course was prepared to be used as a reference for learning the Digital Signal Processing course in the Undergraduate Physics Study Program of the Faculty of Mathematics and Natural Sciences UI which was followed by physics students majoring in physics system and instrumentation semester 7 on the condition that the student had taken the Physics course Modern, Mathematical Physics 2, and Electronics 2. In the Digital Signal Processing course, students will be taught about digital signal analysis methods in the discrete time domain and also discrete frequencies and how to apply the concept of mathematical transformations to digital filter applications appropriately. It is hoped that this BRP can become a reference or reference in the learning process for both lecturers as teachers and students as course participants so that the material is conveyed properly and perfectly..

Depok, November 24th 2016

Adhi Harmoko Saputro, Ph.D.

I. General Information

1.	Name of Program / Study Level	:	Physics / Undergraduate
2.	Course Name	:	Digital Signal Processing
3.	Course Code	:	SCFI604715
4.	Semester	:	7
5.	Credit	:	2 Credits
6.	Teaching Method(s)	:	Interactive lectures, lectures, question- based learning, self-directed study, discussion, independent assignments, and written examinations.
7.	Prerequisite course(s)	:	Modern Physics, Mathematical Method in Physics 2, Electronics 2
8.	Requisite for course(s)	:	None
9.	Integration Between Other Courses	:	None
10.	Lecturer	:	Adhi Harmoko Saputro, Ph.D.
11.	Course Description	:	After completing this lecture, physics students with a special interest in systems and physics instrumentation in semester 7 are able to analyze (C4) digital signals in the discrete time domain and discrete frequency and apply (C3) the concept of transformation for digital filter applications appropriately. The language of instruction used in this course is Indonesian.

II. Course Learning Outcome (CLO) and Sub-CLOs

A. CLO

Students are able to analyze (C4) digital signals in the discrete time domain and discrete frequency and apply (C3) the concept of transformation for digital filter applications appropriately. (ELO(s) 3, 5, 6, 8)

B. Sub-CPMK

- 1. Able to apply (C3) basic electronic concepts for signal conditioning.
- 2. Able to apply (C3) mathematical physics concepts to the digital signal transformation method.
- 3. Able to analyze (C4) digital signals in discrete time and frequency domains using the Fourier transform method.
- 4. Be able to apply (C3) the concept of digital filters for linear time-invariant (LTI) systems.

III.	Teaching Plan

Week	Sub- CLO	Study Materials	Teaching Method	Time Require d	Learning Experienc es (*O-E-F)	Sub-CLO Weight on Course (%)	Sub-CLO Achievement Indicator	References
1				Co	ourse Introdu	ction		
2	1	• Introdu ction of digital signals and systems	Interactive lectures, question-based learning, self- directed study, discussion	100x2 minutes	20% O, 60% E, 20% F	8.33	Able to describe digital signals and systems, especially linear time- invariant (LTI) systems.	Oppenheim, A.V. and Schafer, R.W., <i>Discrete- Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
3	1	• ADC and DAC signal convers ion	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	8.33	Be able to explain how to convert ADC and DAC signals	Oppenheim, A.V. and Schafer, R.W., <i>Discrete-</i> <i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.

4	1	• Discret e time systems and signals	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	8.33	Be able to explain discrete time systems and signals and their differences continuously.	Oppenheim, A.V. and Schafer, R.W., <i>Discrete-</i> <i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
5	2	• Z transfor mation	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	8.33	Be able to explain the Z transformation method	Oppenheim, A.V. and Schafer, R.W., <i>Discrete-</i> <i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
6	2	• Continu ous time signal samplin g	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	8.33	Be able to explain the continuous time signal sampling method	Oppenheim, A.V. and Schafer, R.W., <i>Discrete-</i> <i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
7	2	• Applica tion of the Z transfor mation for linear time- invarian t (LTI) systems	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	8.33	Be able to explain the use of the Z transformation for a linear time-invariant (LTI) system.	Oppenheim, A.V. and Schafer, R.W., <i>Discrete- Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
8				Ν	lid Term Ex	am		
9	3	• Continu ous time signal frequen cy analysis	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	6.25	Be able to explain the continuous time signal frequency analysis method	Oppenheim, A.V. and Schafer, R.W., <i>Discrete-</i> <i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
10	3	• Discret e time signal	Interactive lectures, question-based	100 minutes	20% O, 60% E, 20% F	6.25	Be able to explain discrete time	Oppenheim, A.V. and Schafer, R.W., <i>Discrete</i> -

		frequen cy analysis	learning, self- directed study, discussion				signal frequency analysis method	<i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
11	3	• Fourier transfor m for discrete time signals	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	6.25	Be able to explain the Fourier transform principle for discrete time signals	Oppenheim, A.V. and Schafer, R.W., <i>Discrete- Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
12	3	• Fourier analysis for discrete time signals	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	6.25	Be able to explain the methods and results of Fourier analysis for discrete time signals	Oppenheim, A.V. and Schafer, R.W., <i>Discrete- Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
13	4	• Filter concept	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	8.33	Be able to explain the basic principles of filters for digital systems	Oppenheim, A.V. and Schafer, R.W., <i>Discrete-</i> <i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
14	4	• Finite Impulse Respon se (FIR) digital filter	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	8.33	Able to explain FIR type digital filter	Oppenheim, A.V. and Schafer, R.W., <i>Discrete-</i> <i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
15	4	• Infinite Impulse Respon se (IIR) digital filter	Interactive lectures, question-based learning, self- directed study, discussion	100 minutes	20% O, 60% E, 20% F	8.33	Be able to explain the IIR type digital filter	Oppenheim, A.V. and Schafer, R.W., <i>Discrete-</i> <i>Time Signal</i> <i>Processing</i> (3rd Ed), Prentice Hall, 2009.
16		1			Final Exam			

*) O : Orientation

- E : Exercise
- F : Feedback

References:

- 1. Kehtarnavas, N., Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming, Academic Press, 2008.
- 2. Ingle, V.K., and Proakis, J.G., *Digital Signal Processing using Matlab*, Cengage Learning, 4th Ed., 2012.
- 3. Oppenheim, A.V. and Schafer, R.W., *Discrete-Time Signal Processing* (3rd Ed), Prentice Hall, 2009.

_					
Week	Assignment Name	Sub- CLOs	Assignment	Scope Working Procedure Deadlin	Outcome
2-7, 9-15	Individual Assignment	1-4	Doing homework	The entire Individual I week material coverage for the week	Answers uploaded on EMAS
8	Mid Term Exam	1-2	Written Examination	Signal and system introductionWorking on Mid Term100 minutesADC and DAC signal conversionExam in EMAS100 minutesDiscrete time systems and signalsEMAS100 minutesZ transformation Continuous time signal samplingApplication of the Z transformation for time-invariant linear (LTI) systems100 minutes	Answers to questions uploaded on EMAS
16	Final Exam	3-4	Written Examination	 Continuous time signal frequency analysis Descrete time signal frequency analysis Fourier transform for discrete time signals Fourier analysis for discrete time signals Filter concept Finite Impulse Response (FIR) digital filter Working on Final Exam in 100 minutes More analysis on EMAS 100 minutes Final Exam in EMAS Fourier transform for discrete time signals 	Answers to questions uploaded on EMAS

IV. Assignment Design

		•	Infinite Impulse		
			Response (IIR)		
			digital filter		

V.	Assessment Criteria	(Learning	Outcome	Evaluation)
----	----------------------------	-----------	---------	---------------------

Evaluation Type	Sub-CLOs	Assessment Type	Frequency	Evaluation Weight (%)
Assignment	1-4	Summary or Homework	1 per week	30
Mid Term Exam	1-2	Exam questions at EMAS UI	1	35
Final Term Exam	3-4	Exam questions at EMAS UI	1	35
Total		100		

VI. Rubric(s)

A. Criteria of Individual Assignment Score

Score	Answers Quality
>90	If students can complete more than 90% of the questions correctly
70-89	If students can complete more than 70% s.d. 89% of the questions correctly
60-69	If students can complete more than 60% s.d. 69% of the questions correctly
55-59	If students can complete more than 55% s.d. 59% of the questions correctly
50-54	If students can complete more than 50% s.d. 54% of the questions correctly

B. Mid Term Exam (UTS) and Final Term Exam (UAS)

- 1) Able to express ideas in solving problems (25%)
- 2) Be able to determine the right basic concepts in solving problems (35%)
- 3) Be able to formulate the final solution of problems correcting language errors (30%)
- 4) Able to use the appropriate important units and figures (10%)