

TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

INTRODUCTION TO NUCLEAR PHYSICS

by

Dr. Imam Fachruddin

Undergraduate Program in Physics Faculty of Mathematics and Natural Sciences Universitas Indonesia Depok October 2020

I. General Information

1.	Name of Program / Study Level	:	Physics / Undergraduate
2.	Course Name	:	Introduction to Nuclear Physics
3.	Course Code	:	SCPH603135
4.	Semester	:	5th
5.	Credit	:	3 credits
6.	Teaching Method(s)	:	Lecture and discussion
7.	Prerequisite course(s)	:	Modern Physcs
8.	Requisite for course(s)	:	Nuclear and Particle Physics, Scattering Theory, Physics of Energy
9.	Integration Between Other Courses	:	None
10.	Lecturer(s)	:	 Prof. Dr. Terry Mart Prof. Dr. Anto Sulaksono Dr. rer. nat. Agus Salam Dr. Imam Fachruddin
11.	Course Description	:	This course aims at lecture participants to be able to explain the properties of the atomic nucleus, nuclear processes, and the benefits of nuclear physics. Formation of matter includes Rutherford scattering, nuclear properties, binding energy, bonding fraction, surface effect, energy separation, nuclear radius, semiempirical mass formula, core spin, core electric moment, nuclear magnetic moment, nuclear instability, radioactivity, core models, nuclear force, particle physics, fundamental interactions, quark models, nuclear astrophysics, accelerators, detectors,

physics.

nuclear reactors, the benefits of nuclear

II. Graduate Learning Outcome (GLO), Course Learning Outcome (CLO), and Sub-CLOs

A. GLO

- 1. Applying classical and modern physics concepts in solving general physics problems.
- 2. Formulating problems and solving Physics and its application, as well as interdisciplinary problems related to science and mathematics clumps critically, creatively, and innovatively.

B. CLO

After completing this lecture, Physics students are expected to be able to describe the properties of the atomic nucleus, nuclear processes, and the benefits of nuclear physics.

C. Sub-CLOs

- 1. Explaining the existence of the atomic nucleus, Rutherford's scattering experiment, the basic structure of the atomic nucleus.
- 2. Describe the properties of the atomic nucleus, including binding energy, bonding fraction, surface effect, energy separation, nuclear radius, semiempirical mass formula, nuclear spin, nuclear electric moment, nuclear magnetic moment.
- 3. Describes core instability and radioactivity.
- 4. Describe core models.
- 5. Describe the nuclear force at the hadronic level and its properties.
- 6. Describes energy production and nucleosynthesis in stars.
- 7. Describes the basic knowledge of particle physics as well as the fundamental weak and strong interactions according to the quark model.
- 8. Describes the working principles of nuclear and particle physics equipment, such as nuclear accelerators, detectors, and reactors.
- 9. Explain the benefits of nuclear physics.

II. Teaching Plan

Week	Sub- CLO	Study Materials	Teaching Method	Time Required	Learning Experiences (*O-E-F)	Sub-CLO Weight on Course (%)	Sub-CLO Achievement Indicator	Ref.
1	1	Thomson's atomic model, Rutherford scattering illustration, Rutherford model of atom, the basic structure of the nucleus, some terms regarding the atomic nucleus, magic number	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describe the existence of the atomic nucleus and its structure	[1]
2	1	Rutherford scattering calculation, scattering cross section	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describe the cross- section of the scattering	[1]
3	2	Binding energy, bonding fraction, surface effect, separation energy, nuclear radius, semiempirical mass formula	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Explain and calculate binding energy, separation energy, nuclear radius, explain bond fraction, surface effect, semiempirical mass formula	[1]
4	2	Core spin, core electric moment, dipole moment and quadrupole moment, nucleon magnetic moment, core magnetic moment, effective core magnetic moment	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describe core spin, core electric moment, dipole moment and quadrupole moment of nucleus, nucleon magnetic moment, core magnetic moment, effective core magnetic moment	[1]
5	3	Core instability, core instability form, dynamic instability, beta instability,	Discussion	150 minutes	Presentation of material - question	8%	Describe dynamic instability, beta	[1]

		introduction of the base of the nuclear reactor			and answer discussion		instability, uranium fuels, chain reactions, general parts of a nuclear reactor	
6	3	Radioactivity, natural radioactive core, radioactive calculations, radioactive quantities and units, radioactive age determination of geological objects and organic objects	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describe the phenomenon of radioactivity, calculate radioactive quantities	[1]
7				Mid-Term I	Exam			
8	4	Core model types: independent and collective, liquid drop model, Fermi gas model	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describes the independent and collective core models, liquid drop models, Fermi gas models	[1]
9	4	Skin model, rotational model, vibrational model, Nilsson model, alpha model	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describe skin models, rotational models, vibrational models, Nilsson models, alpha models	[1]
10	5	Nuclear force / strong interaction at the hadronic level, Yukawa's idea, carrier mass relationship and interaction range, nucleon-nucleon (NN) interactions as pawn exchanges, types of NN interaction models, empirical properties of NN interactions, NN scattering and deuteron	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describe Yukawa's ideas, carrier mass relations and interaction range, nucleon-nucleon (NN) interactions as pawn exchanges, types of NN interaction models, empirical properties of NN interactions, NN and deuteron scattering	[1]

14	9	nuclear physics in life	Discussion	150 minutes	and answer	7%	nuclear physics to	[1]
		The base fits and south at the fits of			Presentation of		Describe the benefits	
13	8	Type of collision: fixed target collision and head on collision, accelerator, detector	Discussion	150 minutes	Presentation of material - question and answer discussion	5%	Describe the working principle of nuclear and particle physics equipment	[1]
12	7	The fundamental force and its carrier, classifying particles as hadrons and leptons, classifying hadrons as mesons and baryons, antiparticles, leptons number, baryon number, strangeness number, quark and lepton model (standard model of particle physics), charm number, topness number, number beauty, strong interaction and weak interaction according to the quark model	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describe the fundamental force and its carrier, hadron, lepton, meson, baryon, antiparticle, lepton number, baryon number, strangeness number, quark, gluon, strong interaction and weak interaction according to the quark model	[1]
11	6	First generation star formation, proton cycle, energy production and nucleosynthesis in first generation stars, star evolution, second generation star formation, energy production and nucleosynthesis in second generation stars	Discussion	150 minutes	Presentation of material - question and answer discussion	8%	Describes first generation stars, second generation stars, energy production and nucleosynthesis, stellar evolution	[1]

- *) O : Orientation
 - E : Exercise
 - F : Feedback

References:

- [1] P. E. Hodgson, E. Gadioli, E. Gadioli Erba, *Introductory Nuclear Physics*, Oxford U. Press, 2000.
- [2] W. E. Meyerhof, *Elements of Nuclear Physics*, McGraw-Hill Book Co., 1989.

III. Assignment Design

Week	Assignment Name	Sub- CLOs	Assignment	Scope	Working Procedure	Deadline	Outcome
13	Presentation on nuclear and particle physics equipment	8	Describe and explain the working principles of nuclear and particle physics equipment	The working principle of nuclear and particle physics equipment	As a group, explain and explain the working principles of nuclear and particle physics equipment, then answer questions in the discussion	l week	Presentation and discussion
14	Presentation on the benefits of nuclear physics	9	Describe and explain the benefits of nuclear physics	Benefits of nuclear physics	As a group, explain and explain the benefits of nuclear physics, then answer the questions in the discussion	1 week	Presentation and discussion

IV. Assessment Criteria (Learning Outcome Evaluation)

Evaluation Type	Sub-CLO	Assessment Type	Frequency	Evaluation Weight (%)	
1 st Group	Q	Presentation and	1	20	
Presentation	0	discussion	1	20	
2 nd Group	0	Presentation and	1	20	
Presentation	9	discussion	1	20	
Mid-Term Exam	1 - 3	Written test	1	30	
Final Exam	4 - 7	Written test	1	30	
	•	·	Total	100	

V. Rubric(s)

A. Conversion of the student's final score

Score	Grade	Equivalent
85 - 100	А	4.00
80 - < 85	A-	3.70
75 - < 80	B+	3.30
70 - < 75	В	3.00
65 - < 70	В-	2.70
60 - < 65	C+	2.30
55 - < 60	С	2.00
40 - < 50	D	1.00
< 40	E	0.00

B. Assessment rubric: project report and papers

Criteria	Score	Indicator					
		Contains: (1) background for the preparation of the report, (2)					
	4	problem identification / gap analysis, (3) questions (4)					
		objectives, and (5) citing relevant and current references					
Introduction	3	Loads the goal and 3 of the other 4 items					
Introduction	¹ 2 Loading objective and 2 of the other 4 items						
	1	Does not contain the purpose of preparing the report, there are					
	1	one or more than 4 other items					
	0	Does not contain objectives and 4 other items					
Contont	4	Structured & cohesive, conducts a comprehensive literature					
Content	4	review and performs a complete critical analysis					

	2	Structured, conduct a comprehensive literature review and
	3	complete critical analysis
	2	Less structured, conducting literature reviews but less
	2	comprehensive and carrying out simple critical analysis
	1	Unstructured & cohesive, review of literature is not
	1	comprehensive and does not contain critical analysis
	1	Related to the implementation of tasks and there are
	4	suggestions for feasible improvements to the next assignment
		It is related to the implementation of tasks and there are
	3	suggestions for improvement of the next assignment but it is
		not feasible
	2	Regarding the implementation of the task but no suggestions
	1	Not related to the execution of duties and no suggestions
	4	The report is neat and attractive, complete with cover and
		photo / picture
Conclusion	3	The report is neat and attractive, with a cover or photo / image
Conclusion	2	The report includes a cover or photo / image but is not neat or
	2	attractive
	1	The report is not neat and unattractive, does not have a cover
	1	and photo / image
	4	Easy to understand, correct word choice, and spelling all right
	3	Easy to understand, correct word choice, some misspellings
	2	Less understandable, inaccurate word choice, and some
	Z	misspellings
	1	It is not easy to understand, the choice of words is not quite
	1	right, and there are lots of misspellings