

TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

COMPUTATIONAL PHYSICS

by

Arief Syarifudin Fitrianto

Undergraduate Program in Physics Faculty of Mathematics and Natural Sciences Universitas Indonesia Depok September 2020

I. General Information

- 1. Name of Program / Study Level
- 2. Course Name
- 3. Course Code
- 4. Semester
- 5. Credit
- 6. Teaching Method(s)
- 7. Prerequisite course(s)
- 8. Requisite for course(s)
- 9. Integration Between Other Courses
- 10. Lecturer(s)
- 11. Course Description

- : Physics / Undergraduate
- : Computational Physics
- : SCFI602021
- : 4th
- : 4 credits
- : Interactive lectures (online and offline), independent study
- : Mathematical Physics 2, Mathematical Physics 3
- : Advanced Computational Physics
- : None
- : Arief Syarifudin Fitrianto
- : After attending this lecture, when students are faced with physics problems that require the help of numerical analysis with computers, students are able to apply the basics of programming algorithms and numerical methods and design computer solve programs to these problems systematically, structurally, and optimally. This lecture teaches students various numerical methods that can be applied in physics as well as programming algorithm design methods to carry out numerical methods with the help of computers, which consist of Solving Linear and Non-Linear Equation Systems, Data Fitting Methods with Approximation and Interpolation, Derivative and Integral Numerics, and Differential Equations. This lecture uses the language of instruction in Indonesian.

12. Online Class Platform

: https://emas.ui.ac.id/

II. Graduate Learning Outcome (GLO), Course Learning Outcome (CLO), and Sub-CLOs

A. GLO

- 1. Able to apply classical and modern physics concepts in solving general physics problems.
- 2. Able to apply mathematical methods to solve physics problems analytically and computationally.
- 3. Able to apply knowledge of Physics in society and practical life, as well as identify and adapt to new things.

B. CLO

After completing this lecture, Physics students are expected to be able to apply numerical approaches, create computer programming algorithms to solve physics problems in algebra or calculus form.

C. Sub-CLOs

- 1. Be able to explain various numerical methods that can be used to solve physics problems quantitatively (C2).
- 2. Be able to reconstruct physics problems so that they can be solved quantitatively by numerical methods (C3).
- 3. Be able to design numerical algorithms and numeric programs in Python3 to be run by computers (C3).
- 4. Be able to analyze the results obtained from numerical methods in order to determine solutions that have precise and accurate physical meanings (C4).
- 5. Able to make a physics simulation project and the like using various numerical methods that have been studied (C5).

II. Teaching Plan

Week	Sub-	Study Materials	Tea	ching	Learning Ex (*O-I	-	Sub-CLO Achiev	Ref.	
	CLO		Method	Mode	Online	Offline	General	Specific	
1	1	Video introduction to mathematical models for physics.	Interactive lectures, independent study In-class lectures (2 x 100 minutes)	*Asynchronous using EMAS UI (self-study & discussion forum)	O: Before the class session, students are expected to watch an introduction video of mathematical models to physics through EMAS (30%) E: Students discuss various mathematical models that can be applied in physics (30%)	E: Students do group assignments related to mathematical modeling for Physics (30%)	After participating online and in discussions, students can create mathematical models for physics cases.	Students are able to choose and make appropriate mathematical models for each given physics case	[1], [2]
				*Synchronous using Video Conference	F: Lecturers provide responses to the results of discussions and questions and answers via video conference (10%)				
2 - 3	3	An introductory video to Python3 programming.	Interactive lectures, independent study In-class lectures (4 x 100 minutes)	Asynchronous using EMAS UI (self-study & discussion forum)	O: Students watching videos through EMAS (30%) E: Students practice Python3 programming using	E: Students do independent assignments related	Students are able to make Python3 programs	Able to create Python3 programs for simple problems in physics, such as free fall and straight motion.	[3]

				Synchronous using Video Conference	applications Anaconda/Miniconda and the editor of Spyder3 or Jupyter. F: Lecturers provide advice and direction through discussion forums	to Python3 programming.			
4	2	Video of solving linear systems with the Gaussian method. Video of linear system completion with LU decomposition method.	Interactive lectures, independent study In-class lectures (2 x 100 minutes)	Asynchronous using EMAS UI (self-study & discussion forum)	O: Students watching videos through EMAS (30%) E: Students learn to reconstruct physics problems into a system of linear equations.	E: Students are given several physics cases and related fields that can be reconstructed into a linear system to be solved by the method of solving.	Students are able to reconstruct a physics case in the form of a system of linear equations.	Students can reconstruct and solve physics problems in mechanics, magnetic electricity, and others using the linear system method.	[1], [2]
				Synchronous using Video Conference	F: The lecturer provides a question and answers session when students experience difficulties during practice.				
5	2	Video of non-linear equation systems and their solutions using the incremental	Interactive lectures, independent study In-class lectures (2	Asynchronous using EMAS UI	O: Students watching videos through EMAS		Students are able to recognize physics problems that can be solved with a	Students are able to reconstruct physics problems related to	[1], [2]

		search, bisection, newton-raphson, secant method. Video of solving linear systems using the Newton-Raphson method.	x 100 minutes)	Synchronous using	E: Students solve problems related to finding the value 0 (root) of a function F: Lecturers provide	E: Students work on assignments in the form of solving physics problems that can be reconstructed as a non-linear system.	system of non- linear equations.	mechanics, heat, magnetic electricity, and optics into non- linear system problems that can be solved numerically.	
		Video of solving complex linear systems using the Laguerre method.		Video Conference	advice and direction through discussion forums				
6	2,4	Video data fitting with Lagrange interpolation. Video data fitting with Newton interpolation.	Interactive lectures, independent study In-class lectures (2 x 100 minutes)	Asynchronous using EMAS UI	O: Students watching videos through EMAS E: Students do assignments related to fitting observational data in physics.	E: Students are given the task of processing simple data from observations, measurements, and experiments.	Students understand and are able to apply the interpolation method to the measurement result data.	Students are able to find the relationship between variables in the data through the fitting of the measurement/ observation data curve.	[1], [2]
				Synchronous using Video Conference	F: Lecturers provide advice and direction through online and offline discussions.				
7	4	Video examples of solving numerical cases in physics and mid-term exam preparation.	Interactive lectures, independent study In-class lectures (2 x 100 minutes)	Asynchronous using EMAS UI	O: Students watching videos through EMAS E: Students practice the preparation of the	E: Students work on cases given in	Students are able to solve cases given by groups.	Students successfully complete cases and present their work via video conferencing.	

					mid-term exam in groups and present the results F: Lecturers provide suggestions and directions after students make	groups, prepare presentations.			
8	2, 4	Video fitting data using the least-square approximation method.	Interactive lectures, independent study In-class lectures (2 x 100 minutes)	Asynchronous using EMAS UI	presentations.O: Students watching videos through EMASE: Students do assignments related to fitting observational data in physics.	E: Students are given the task of processing simple data from observations, measurements, and experiments.	Students understand and are able to apply the least-square method to measurement data.	Students are able to find the relationship between variables in the data through the fitting of the measurement/ observation data curve.	[1], [2]
				Synchronous using Video Conference	F: Lecturers provide advice and direction through online and offline discussions.				
9	2, 4	Learning videos on numerical integration.	Interactive lectures, independent study In-class lectures (2 x 100 minutes)	Asynchronous using EMAS UI	O: Students watching videos through EMAS E: Students do assignments related to numerical integration of data and functions.	E: Students work on assignments related to the numerical integration method to solve several	Students are able to explain and apply the trapezoid integration method, Simpson, and Romberg.	Students are able to solve cases in Basic Physics with the numerical integration method.	[1], [2]

10	2, 4	Learning videos on numerical differentials.	Interactive lectures, independent study In-class lectures (2 x 100 minutes)	Synchronous using Video Conference Asynchronous using EMAS UI Synchronous using Video Conference	F: Lecturers provide advice and direction through online and offline discussions. O: Students watching videos through EMAS E: Students do assignments related to numerical differentials on data and functions. F: Lecturers provide advice and direction	physics problems and related fields. E: Students work on assignments related to finite difference methods for numerical differentials to solve several physics problems and related fields.	Students are able to explain and apply the method of finite difference and Richardson's extrapolation for numerical differentials.	Students are able to solve physics cases related to the differentiation of a function against certain variables.
				Video Conference	advice and direction through online and offline discussions.			
11- 12	2, 4	Video for learning 1st-order differential equations. Video for learning 2nd-order differential equations.	Interactive lectures, independent study In-class lectures (3 x 100 minutes)		O: Students watching videos through EMAS E: Students work on assignments related to differential equations in physics.	E: Students work on assignments related to numerical differential equations to solve several physics problems and related fields.	Students are able to explain and apply the Euler and Runge-Kutta methods to solve numerical differential equations.	Students are able to reconstruct physics problems into differential equations that can be solved by numerical methods.

Start from 3, presented on 13-14	5	Physics Simulation Project	Independent and group study	Asynchronous, independent learning	 F: Lecturers provide advice and direction through online and offline discussions. O: Students get explanations related to simulation projects and numerical applications in physics. E: Students make project proposals and upload them to EMAS, then present the results of the projects they make. F: Lecturers provide 	E: Students design a physics simulation project or apply numerical methods in the field of physics, make reports on work and results, create simulation programs.	Students are able to apply numerical methods to a physics simulation project, physics education, and physics applications in various fields.	Students are able to produce a computer application product that applies various numerical methods that have been studied.	
					suggestions and directions for the proposed project proposals.				

*) O : Orientation

E : Exercise

F : Feedback

- Asynchronous : learning interactions are carried out flexibly and not necessarily at the same time, for example using a discussion forum or independent study/student assignments.
- Synchronous : learning interactions between lecturers and students are carried out at the same time, using video conferencing or chat technology.

References:

- [1] Burden & Faires, Numerical Analysis, 10 ed.
- [2] Stephen Chapra, Numerical Methods for Scientist and Engineer, 7 ed.
- [3] Hans P Langtangen, A Primer on Scientific Computing with Python 3, 5ed.

III. Assignment Design

Week	Assignment Name	Sub-CLOs	Assignment	Scope	Working Procedure	Deadline	Outcome
2	T1	1, 3	Students create mathematical models for several cases in Basic Physics and the Python3 program for solving them.	Mathematical modeling for physics as well as Python3 programming for science.	Independent assignments and uploaded to EMAS	1 week	Answer sheets to work on questions in PDF form and Python3 programs in zip/7z files.
4	T2	2, 3, 4	Students solve linear and non-linear system problems in Physics.	Linear Equation System	Independent assignments and uploaded to EMAS	1 week	Answer sheets to work on questions in PDF form and Python3 programs in zip/7z files.
6	T3	2, 3, 4	Students solve non-linear problems in physics along with data fitting with interpolation.	Non-linear systems and data interpolation.	Independent assignments and uploaded to EMAS	1 week	Answer sheets to work on questions in PDF form and Python3 programs in zip/7z files.
9	T4	2, 3, 4	Students solve problems related to data fitting with least-squares and numerical integration.	Data fitting with least- square numerical integrals.	Independent assignments and uploaded to EMAS	1 week	Answer sheets to work on questions in PDF form and Python3 programs in zip/7z files.
12	T5	2, 3, 4	Students solve physics problems with numerical differential equations.	Differential and numerical differential equations.	Independent assignments and uploaded to EMAS	1 week	Answer sheets to work on questions in PDF form and Python3 programs in zip/7z files.
3-12	Τ6	1, 2, 3, 4, 5	Students make a numerical method application project in Physics.	All material in this course.	Independent assignments and uploaded to EMAS	10 weeks	Project work reports, project results papers, presentation materials, and Python3 codings of applications made.

Evaluation Type	Sub-CLO	Assessment Type	Frequency	Evaluation Weight (%)
Mid-Term Exam	1, 2, 3, 4	Written test via EMAS	1	25
Final Exam	1, 2, 3, 4	Written test via EMAS	1	25
Weekly assignments and quizzes	1, 2, 3, 4	Assessment forms via EMAS	7	20
Project Report Presentation	1, 2, 3, 4, 5	Project assessment form	1	30
			Total	100

IV. Assessment Criteria (Learning Outcome Evaluation)

V. Rubric(s)

11. Conversion of the stud	A. Conversion of the student s inthis score							
Score	Grade	Equivalent						
85 - 100	А	4.00						
80 - < 85	A-	3.70						
75 - < 80	B+	3.30						
70 - < 75	В	3.00						
65 - < 70	В-	2.70						
60 - < 65	C+	2.30						
55 - < 60	С	2.00						
40 - < 50	D	1.00						
< 40	Е	0.00						

A. Conversion of the student's final score

B. Assessment rubric: project report and papers

Criteria	A (90)	B (75)	C (60)	D (50)
Organization	Information is	Information is	Information is	There is no clear
(Overall	presented in an	logically ordered	scattered and	sequence of
sequence, flow,	effective order.	by paragraphs	needs further	paragraphs, so
and	The excellent	and transitions.	development.	there is no
transition)	structure of	Within a section,		progressive flow
	paragraphs and	the order in		of ideas. The
	transitions	which ideas are		details and
	improves	presented may		examples are

	readability and	be confusing at		disorganized,
	comprehension.	times.		difficult to
	The Executive	unics.		follow and
	Summary or			understand.
	abstract is			
	presented first,			
	allowing the			
	reader to easily			
	follow the rest of			
	the report.			
Information	Supporting	Some details do	Details are a bit	Unable to find
Quality	details are	not support the	vague.	certain details.
	specific to the	topic of the		
	topic and	report.		
	provide the			
	necessary			
	information.			
Introduction	The introductory	The introductory	The introductory	The introductory
	paragraph is	paragraph is	paragraph is	paragraph is
	clearly stated,	clearly stated	unclear.	unclear.
	has a sharp	with focus.		
	focus, is			
	different, and			
	increases the			
	impact of the			
	-			
Conclusion	report. Conclude	Summarize the	Closing	Clasing
Conclusion	_		Closing	Closing
	paragraphs	following	paragraphs are	paragraphs are
	summarize and	paragraphs and	only remotely	not clear.
	draw clear,	summarize the	related to the	
	effective	discussion report	topic of the	
	conclusions and	and draw	report.	
	increase the	conclusions.		
	impact of the			
	report.			
Use of language	Sentences are	For the most	Minor mistakes	Major mistakes
(choice of	complete and	part, sentences	in sentence	in sentence
words, grammar,	grammatical,	are complete and	structure and	structure and
and sentence	and they flow	grammatical,	grammar are	grammar are
structure)	together easily.	and they flow	frequent enough	frequent enough

	TT1 1 '	1 .1	1 (1 1 1)	1 (1 1)
	The word is	together easily.	that they detract	that they distract
	chosen for its	Every mistake is	from the reader	the reader and
	proper meaning.	minor and	and distract from	interfere with
		doesn't distract	meaning. There	meaning. There
		the reader.	are unnecessary	are unnecessary
		Repetition of the	repetitions of the	repetitions of the
		same words and	same words and	same words and
		phrases is	phrases.	phrases.
		avoided.		
Use of images	All figures,	For the most	Few of the	Numbers,
	graphics, and	part, numbers,	numbers,	graphics, and
	pictures are	graphics, and	graphics, and	images are of
	accurate,	images are	images are	poor quality,
	consistent with	accurate,	accurate,	have a lot of
	the text, and of	consistent with	consistent with	inaccuracies, and
	good quality.	the text, and are	the text, and of	are mislabeled,
	They increase	of good quality.	good quality.	or may be
	understanding of	They are	They are not	missing. There
	the text. All are	generally labeled	labeled properly.	may be
	properly labeled	correctly		appropriate
	according to	according to		explanatory text
	engineering	engineering		or there may be
	standards and	standards. All		redundancy with
	referenced in the	referenced in the		the text.
	text.	text.		
Bibliography	All sources are	All sources are	Several sources	The source is not
	cited and appear	cited but appear	cited appear but	cited in the
	in the correct	in an incorrect	are not	paper or the
	format.	format.	all. Not	proper format is
			formatted	not used.
			properly.	
Critical	This report	This report	This report	This report does
	discusses	discusses	discusses either	not mention
	strengths and	strengths and	the strengths or	strengths or
	weaknesses and	weaknesses.	weaknesses of	weaknesses.
	suggests ways		the findings but	
	that could be		not both.	
	improved			
Connection	This report	Reports create	Reports create	The report does
Sourceuon	creates a suitable	appropriate	unclear or	not establish a
	creates a suitable	appropriate		not establish a

	relationship	relationships	inappropriate	connection, only
	between all the	between several	relationships	displays
	key components	components.	between	components.
	(problem	r	components.	F
	solution,		components	
	problem to			
	problem,			
	solution to			
	solution).			
Analysis	This paper	This paper is	This paper	The parts
Anarysis	succeeds in	successful in	breaks down an	identified are not
	breaking down	breaking down	argument,	correct and/or
	arguments,	arguments,	problem, or	relevant. The
	problems, or	problems, or	problem into	relationships
	problems into	problems into	sections, but	between the
	relevant	relevant	some sections	
	sections. The	sections. The	may be missing	parts are completely
	relationship	relationship	or unclear. The	inaccurate.
	between the	between the		maccurate.
			relationship between the	
	parts is clear and	parts is quite		
	very accurate.	accurate.	components is	
			somewhat	
A 1	T1	T 1	accurate.	The survey laws in the
Analysis depth	The results were	The analysis is	The analysis is	The analysis is
	analyzed	detailed enough	so vague that the	so inadequate
	carefully and	to aid	reader is barely able to evaluate	that the reader is
	objectively.	understanding		unable to
	Interpretations	but is not	the validity of	evaluate the
	are made using	enhanced by	the interpretation	validity of the
	appropriate	equations,	of the findings.	interpretation of
	equations,	models, or		the findings.
	models, or	theories.		
S. A. A.	theories.			TT1 () 1
Synthesis	This paper	This paper	This paper	The parts to be
	succeeded in	integrates the	integrates	integrated are
	integrating all	most relevant	several sections	unclear and/or
	the relevant	passages from	from various	relevant. The
	sections from	the various	places into a	relationship
	various places	places into a	rather coherent	between the
	into a coherent	largely coherent	whole. The	parts is unclear.

	whole. The	whole. The	relationship	
			-	
	relationship	connections	between the	
	between the	between the	components is	
	components is	sections are	somewhat	
	clear and	generally clear.	unclear.	
	insightful.			
		Professionalism		
Visual format	This document is	Using white	The document is	This document is
	visually	space and color	not visually	unattractive and
	appealing. The	helps readers	appealing and	has no visual
	white space and	navigate the	there are several	cues.
	color are just	document,	"cues" to help	
	right for	although layouts	the reader	
	separating	can be more	navigate the	
	blocks of text	effective and	document.	
	and adding	attractive.		
	emphasis.			
	Readers can			
	easily navigate			
	documents.			
Ability to define	Terms and	For the most	?	Excessive terms
terms and	jargon are used	part, terms and		and jargon
jargon	correctly. They	jargon are used		without adequate
	define it at the	correctly. There		explanation.
	start of the	have been		
	report.	several attempts		
	-	to define them.		
	I	Self Evaluation	I	
Group analysis	Clear	Only discuss two	Doesn't	
(the process and	articulation of	of the three;	articulate one of	
the role of the	what is working	discuss groups	the three - what	
individual in it)	well and why,	without	works well and	
, ,	what is not	discussing	why, what	
	working well	themselves,	doesn't work	
	and why, and	discussing	well and why,	
	ways of	themselves	how to improve.	
	increasing the	without	r	
	effectiveness	discussing		
	and efficiency of	groups.		
	the group in the	0r-		
L	no Stoup in the	l	I	I

process for the		
future,		
remembering		
oneself as well		
as others.		

C. Assessment rubric: presentations

Criteria	A (90)	B (75)	C (60)	D (50)
Get the	Provide a funny	Do two	Not trying to get	
audience's	detail or fact, a	introductory	the audience's	
attention.	series of	sentences, then	attention, just	
	questions, a	start the speech.	starting the	
	short		speech.	
	demonstration,			
	colorful visuals,			
	or a personal			
	reason why they			
	chose this topic.			
Style	The presentation	The presentation	The presentation	Presentations are
	level is	level is generally	aspect is too	consistently too
	appropriate for	appropriate. The	basic or too	basic or too
	the audience.	pacing is	sophisticated for	sophisticated for
	Planned	sometimes too	the audience.	the audience.
	presentation,	fast or slow. The	The presenter	Information is
	conversation,	presenter seems	seems	read to the
	pacing for	a little	uncomfortable	audience. The
	audience	uncomfortable	and can be heard	presenter was
	understanding.	and the audience	only if the	clearly anxious
	This is not a	occasionally has	listener is very	and inaudible.
	paper reading.	a hard time	attentive. Most	
	The speakers are	hearing the	of the	
	clearly	presenter.	information is	
	comfortable at		read.	
	the front of the			
	group and can be			
	heard by all.			
Use of	Communication	Communication	Poorly prepared	No
communication	helps improve	helps contribute	or improperly	communication
aids (slides,	presentations.	to the quality of	used	aids were used,
posters,	They are	the presentation.	communication	or they were so

handouts, etc.)	prepared in a	The font size is	tools. Fonts are	ill-equipped that
	professional	suitable for	too small to be	they detracted
	manner. The	reading.	seen easily. Too	from the
	fonts on the	Appropriate	much	presentation.
	visuals are large	information is	information	
	enough for all to	included. Some	included.	
	see. Information	materials are not	Unimportant	
	is organized to	supported by	material is	
	maximize	visual aids.	highlighted. The	
	audience		listener may be	
	understanding.		confused.	
	Minimized			
	details.			