TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

STATISTICAL PHYSICS

by

Dedi Suyanto, Ph.D.

Undergraduate Program in Physics
Faculty of Mathamatics and Natural Sciences
Universitas Indonesia
Depok
December 2017

PREFACE

The Teaching Instructional Design (BRP) of Statistical Physics is prepared to be used as a reference for the subject of Statistical Physics in Physics Graduate Program of FMIPA UI which is followed by physics student of 5th semester with the requirement that the students have taken thermodynamics course, Mathematics Physics 2, and Physics Mathematics 3. In the Statistical Physics course, students will be taught to apply the principles of statistics, the concepts of quantum mechanics, and the semiclassical approach to systems consisting of many particles to provide a microscopic explanation of commonly used thermodynamic macroscopic principles and phenomena known, and provides a systematic microscopic modeling procedure to predict the various thermodynamic properties of a system. It is expected that this BRP can be a reference or reference on the learning process for both lecturers as faculty and students as participants of the course so that the material is delivered well and perfectly.

Depok, 15 December 2017

Dedi Suyanto, Ph.D.

I. General Information

1. Name of Program / Study Level : Physics / Undergraduate
2. Course Name
3. Course Code
: Statistical Physics
4. Semester
: SCFI603110
5. Credit
6. Teaching Method(s)
7. Prerequisite course(s)
8. Requisite for course(s)
9. Integration Between Other Courses
10. Lecturer(s)
11. Course Description
: 5
: 4 credits
: Lecturing, individual-assignment, written exam
: Thermodynamics, Mathematical Methods in Physics 2, Mathematical Methods in Physics 3
: Solid State Physics 2, Advanced Laboratory, Capita Selection of Condensed Matter

: None

1. Dedi Suyanto, Ph.D.
2. Dr. Budhy Kurniawan
3. Dede Djuhana, Ph.D.
: Statistical Physics is one of compulsory courses in Undergraduate Program in Physics. The content of this course consist of: canonical and microcanonical ensembles, chemical potential, classical partition function, equipartition energy, Gibbs paradox, entropy, ideal gas on grand canonical ensemble, Maxwell-Boltzmann distribution, diatomic gas, interacting gas, density of states, blackbody radiation, Planck distribution, Debye model, BoseEinstein distribution, Bose-Einstein condensation, fermion, Pauli paramagnetism, Landau diamagnetism, phase transition, mean-field theory, Ising model, and Landau-Ginzburg theory.

II. Course Learning Outcome (CLO) and Sub-CLOs

A. CLO

Students are able to apply general concepts of statistical physics in the area of condensedmatter, material, nuclear and particle, instrumentation, and medical physics. (ELO(s) 1, 2, 5, 6, 7)

B. Sub-CLOs

1. To calculate basic distribution function using random walk method (C3).
2. To relate the concept of canonical and microcanonical ensembles with thermodynamics quantities (C3).
3. To calculate chemical potential, classical partition function, equipartition energy, and entropy and apply them to the concept of Gibbs paradox (C3).
4. To apply Maxwell-Boltzmann distribution function on diatomic gas and interacting gas and calculate the density of states (C3).
5. To apply Planck distribution function on blackbody radiation and Debye model and apply Bose-Einstein distribution function on Bose-Einstein condensation (C3).
6. To apply Fermi-Dirac distribution function on fermion, Pauli paramagnetism, and Laudau diamagnetism (C3).
7. To apply grand canonical ensemble on ideal gas, phase transition, phase transition level one and two, and Landau-Ginzburg theory (C3).
8. To apply mean-field theory on one dimensional Ising model (C3)

III. Teaching Plan

Week	Sub-CLO	Study Materials	Teaching Method	Time Required	Learning Experiences (*O-E-F)	Sub-CLO Weight on Course (\%)	Sub-CLO Achievement Indicator	References
1	1	Random walk, binomial, Gaussian, and Poisson distributions, distribution of many-variables probability, continuous distribution, and expectation value	Lecturing	200 minutes	60% O, 20\%E, 20\%	5	To calculate distribution function using random walk method	No. 1 Ch. 1
2	2	Thermal and mechanical interactions between two particles, relation between microcanonical ensemble with thermodynamics, and monoatomic ideal gas	Lecturing	200 minutes	$60 \% \text { O, 20\%E, } 20 \% \text { F }$	5	To relate microcanonical ensemble with thermodynamics quantities	$\begin{gathered} \text { No. } 2 \mathrm{Ch} \text {. } \\ 4 \end{gathered}$
3	2	Ideal half-spin paramagnet, Einstein vibration, twostates particle, and Boltzmann gas	Lecturing	200 minutes	60\% O, 20\%E, 20\% F	5	To apply canonical ensemble	$\begin{gathered} \text { No. } 2 \mathrm{Ch} . \\ 5 \end{gathered}$
4	3	Chemical potential, classical partition function, equipartition energy, Gibbs paradox, and entropy	Lecturing	200 minutes	60\% O, 20\%E, 20\% F	10	To calculate chemical potential, partition function, equipartition energy, and entropy and use them on Gibbs paradox concept	No. 1 Ch. 7
5	4	Maxwell-Boltzmann distribution, diatomic gas, interacting gas, and density of states	Lecturing	200 minutes	60\% O, 20\%E, 20\% F	10	To apply MaxwellBoltzmann distribution function and calculate the density of states	No. 1 Ch . 7
6	5	Blackbody radiation, Planck distribution, and Debye model	Lecturing	200 minutes	60\% O, 20\%E, 20\% F	5	To calculate Planck distribution function and use it on blackbody	$\begin{gathered} \text { No. } 1 \text { Ch. } \\ 9 ; \text { no. } 2 \\ \text { Ch. } 10 \end{gathered}$

							radiation and Debye model	
7	5	Bose-Einstein distribution and Bose-Einstein condensation	Lecturing	200 minutes	60\% O, 20\%E, $20 \% \mathrm{~F}$	10	To calculate BoseEinstein distribution function	$\begin{gathered} \text { No. } 1 \text { Ch. } \\ \text { 9; no. } 2 \\ \text { Ch. } 10 \end{gathered}$
8	Mid-Term Exam							
9	6	Fermi-Dirac distribution, fermion, Pauli paramagnetism, and Landau diamagnetism	Lecturing	200 minutes	$60 \% \mathrm{O}, 20 \% \mathrm{E}, 20 \% \mathrm{~F}$	5	To use Fermi-Dirac distribution function on Pauli paramagnetisme and Landau diamagnetisme	$\begin{gathered} \text { No. } 1 \text { Ch. } \\ \text { 9; no. } 2 \\ \text { Ch. } 9 \end{gathered}$
10	7	Grand canonical ensemble on ideal gas	Lecturing	200 minutes	$60 \% \text { O, 20\%E, } 20 \% \text { F }$	10	To apply grand canonical ensemble on ideal gas	$\begin{gathered} \text { No. } 1 \text { Ch. } \\ \text { 8; no. } 2 \\ \text { Ch. 7; no. } \\ 3 \text { Ch. } 9 \end{gathered}$
11	7	Grand canonical ensemble on phase transition	Lecturing	$200 \text { minutes }$	$60 \% \text { O, 20\%E, } 20 \% \text { F }$	5	To apply grand canonical ensemble on phase transition	$\begin{gathered} \text { No. 1 Ch. } \\ 8 ; \text { no. } 2 \\ \text { Ch. 7; no. } \\ 3 \text { Ch. } 9 \end{gathered}$
12	7	Grand canonical ensemble on phase transition level one and two	Lecturing	200 minutes	60\% O, 20\%E, 20\% F	5	To apply grand canonical ensemble on phase transition level one and two	$\begin{gathered} \text { No. } 1 \text { Ch. } \\ 8 ; \text { no. } 2 \\ \text { Ch. 7; no. } \\ 3 \text { Ch. } 9 \end{gathered}$
13	7	Grand canonical ensemble on Landau-Ginzburg theory	Lecturing	200 minutes	60\% O, 20\%E, 20\% F	5	To apply grand canonical ensemble on Landau-Ginzburg theory	$\begin{gathered} \text { No. } 1 \text { Ch. } \\ 8 ; \text { no. } 2 \\ \text { Ch. 7; no. } \\ 3 \text { Ch. } 9 \end{gathered}$
14	8	Mean-field theory	Lecturing	200 minutes	60\% O, 20\%E, 20\% F	5	To explain the meanfield theory	$\begin{gathered} \text { No. } 2 \text { Ch. } \\ 13 \end{gathered}$
15	8	One dimensional Ising model	Lecturing	200 minutes	60\% O, 20\%E, 20\% F	5	To use mean-field theory on one dimensional Ising model	$\begin{gathered} \text { No. } 2 \text { Ch. } \\ 13 \end{gathered}$
16				Fi	1 Exam			

*) O: Orientation
E: Exercise
F: Feedback

References:

1. F. Reif, Fundamentals of Statistical and Thermal Physics, McGraww-Hill Book Company, 1985.
2. S. R. Salinas, Introduction to Statistical Physics, Springer-Verlag, 2001.
3. H. B. Callen, Thermodynamics and an Introduction to Thermostatistics $2^{\text {nd }}$ Edition, John Wiley \& Sons, 1985.

IV. Assignment Design

Week	Assignment Name	Sub-CLO	Assignment	Scope	Working Procedure	Deadline	Outcome
1	Individual Assignment 1	1	Problem set	Random walk, binomial, Gaussian, and Poisson distributions, distribution of many-variables probability, continuous distribution, and expectation value	Homework	1 week	Homework answer sheet
3	Individual Assignment 2	2	Problem set	Thermal and mechanical interactions between two particles, relation between microcanonical ensemble with thermodynamics, monoatomic ideal gas, ideal half-spin paramagnet, Einstein vibration, two-states particle, and Boltzmann gas	Homework	1 week	Homework answer sheet
4	Individual Assignment 3	3	Problem set	Chemical potential, classical partition function, equipartition energy, Gibbs paradox, and entropy	Homework	1 week	Homework answer sheet
5	Individual Assignment 4	4	Problem set	Maxwell-Boltzmann distribution, diatomic gas, interacting gas, and density of states	Homework	1 week	Homework answer sheet
7	Individual Assignment 5	5	Problem set	Blackbody radiation, Planck distribution, Debye model, Bose-Einstein distribution, and Bose-Einstein condensation	Homework	1 week	Homework answer sheet
9	Individual Assignment 6	6	Problem set	Fermi-Dirac distribution, fermion, Pauli paramagnetism, and Landau diamagnetism	Homework	1 week	Homework answer sheet
13	Individual Assignment 7	7	Problem set	Grand canonical ensemble on ideal gas, phase transition, phase transition level one and two, and Landau-Ginzburg theory	Homework	1 week	Homework answer sheet
15	Individual Assignment 8	8	Problem set	Mean-field theory and one dimensional Ising model	Homework	1 week	Homework answer sheet

V. Assessment Criteria (Learning Outcome Evaluation)

Evaluation Type	Sub-CLO	Assessment Type	Frequency	Evaluation Weight (\%)
Individual Assignment	$1-8$	Answer sheet	8	30
Mid-Term Exam	$1-5$	Answer sheet	1	35
Final Exam	$6-8$	Answer sheet	1	35
Total				$\mathbf{1 0 0}$

VI. Rubric(s)

A. Criteria of Assignment and Exam Score

Score	Answer Quality
100	Answer is very precise and all the concept and main component are explained completely
$76-99$	Answer is fairly precise and the concept and main component are explained fairly complete
$51-75$	Answer is less precise and the concept and main component are explained less complete
$26-50$	Answer is poorly precise and the concept and main component are explained poorly complete
<25	Answer is wrong

VII. Appendix: Example of Exam Problems

A. Mid-Semester Exam

1. Suppose a typo occurs randomly, 600 pages of book has 600 errors. Use a Poisson distribution to calculate:
i. probability of a page that is not typo
ii. the probability of a page there are three typos.
2. An isolated system composed of N noninteracting particles with spins $1 / 2$, has a magnetic moment μ which can be parallel or opposite to the external magnetic field H. The system energy is $E=-\left(n_{1}-n_{2}\right) \mu H$ with n_{1} the number of paralleled particles to the field and n_{2} of the number of particles in opposite direction with the field. Calculate the number of states $\Omega(E)$ in the interval E and $E+\delta E$, assume $\delta E \ll E$, but $\delta E \gg \mu H$
3. A box is separated by a separator so that the volume comparison is $3: 1$, the largest part is 1000 Ne while the small part there are 100 molecules He . The separator hollowed and waited until equilibrium. Asked:
a) what is the average of Ne and He molecules in the large volumes
b) Calculate the probability of obtaining 1000 Ne molecules in large portions and 100 He molecules in small portion
4. 1 kg of water at $0^{\circ} \mathrm{C}$ is closer to the $100^{\circ} \mathrm{C}$ heat reservoir. After the temperature of the water is $100^{\circ} \mathrm{C}$, calculate the entropy changes of:
a. water
b. hot reservoir
c. the overall system (water and heat reservoir)

B. Final-Semester Exam

1. What is the Gibbs paradox?
2. See the picture below, the lowest is the isothermal curve, this curve contains enough information. Explain what information can be obtained?

3. What is the equipartition theorem?
4. Review 2 particles with 3 probability of quantum state $s=1,2,3$.
a) Draw the probability matrix for all three statistics: Maxwell-Boltzmann, BoseEinstein, and Fermi-Dirac
b) Calculate the probability ratio of finding particles in different states for all three statistics: Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac
c) What is the physical interpretation from the ratio above
