


Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018    1
   

KATA PENGANTAR 

 

Puji syukur kehadirat Tuhan Yang Maha Esa, akhirnya penyusunan Buku Penuntun Praktikum Elektronika 

Digital edisi 2018 dapat diselesaikan. Buku penuntun ini merupakan, acuan yang akan digunakan oleh praktikan 

yang akan melakukan Praktikum Elektronika II dan merupakan lanjutan dari Praktikum Elektronika I 

sebelumnya.  

 

Pada edisi ini, setiap modul mengalami penyempurnaan dari modul sebelumnya dan telah disesuaikan dengan 

Mata Kuliah Elektronika dan perkembangan dunia elektronika. Penambahan juga dilakukan seperti pada modul 

6 – 9 yang menggunakan perangkat ZYBO™ FPGA Board dengan menggunakan VHDL sebagai bahasa 

pemrogramannya. Kami berharap, praktikan tidak hanya terasah kemampuannya pada sisi hardware saja namun 

juga pada bagian back-end (software), serta alur pemikiran konstruktifnya. 

 

Akhirnya, kami mengucapkan terima kasih kepada bapak Dr. rer. nat. Agus Salam selaku Ketua Departemen 

Fisika yang telah banyak men-support baik moril maupun materil hingga penyusunan buku ini dapat terlaksana 

dengan baik. Buku Penuntun Praktikum ini jauh dari kata sempurna, maka saran dan kritik yang membangun 

selalu kami nantikan demi penyempurnaan dan perkembangan kita semua. 
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TATA TERTIB PRAKTIKUM ELEKTRONIKA  
LABORATORIUM ELEKTRONIKA, DEPARTEMEN FISIKA 

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 
UNIVERSITAS INDONESIA

1. Praktikan harus hadir maksimal 10 menit sebelum praktikum dimulai, bagi praktikan yang terlambat 
tidak dapat mengikuti praktikum pada hari tersebut, dan percobaan pada hari tersebut dinyatakan gagal. 

2. Pada saat berada di laboratorium, praktikum harus tenang, tertib, sopan, dan bertanggungjawab. Tas, 
jaket, buku, dan perlengkapan lainnya yang tidak diperlukan untuk praktikum dititipkan di loker. 

3. Praktikan dapat mengikuti praktikum apabila memenuhi syarat-syarat sebagai berikut: 

a. Membawa Kartu Praktikum 
b. Membawa Kotak Komponen yang telah dipinjamkan sebelumnya (Jaminan Kotak Komponen 

Rp 50.000,-) 
c. Membawa Laporan Praktikum berupa: 

i. Laporan Pendahuluan modul hari-H 
ii. Laporan Akhir modul sebelumnya, beserta lampiran data pengamatannya 

d. Lulus Tes Pendahuluan (minimum 50% dari nilai total) 
e. Apabila tidak memenuhi syarat (a), praktikan wajib melaporkan ke co-PJ dan dikenakan denda 

Rp 15.000,- 
f. Apabila tidak memenuhi syarat (b), praktikan wajib melaporkan ke co-PJ dan dikenakan denda 

Rp 30.000,- 
g. Apabila tidak memenuhi syarat (c) dan (d) maka praktikan tidak dapat mengikuti praktikum 

pada hari tersebut dan percobaan pada hari tersebut dinyatakan gagal 
4. Jika ada perlengkapan praktikum yang hilang, praktikan wajib melaporkan kepada co-PJ sebelum 

praktikum dimulai 
5. Bagi praktikum yang berhalangan hadir, dapat memberikan surat keterangan resmi yang akan 

diserahkan kepada co-PJ atau Kepala Laboratorium 
6. Praktikan harus memperoleh data melalui praktikum yang dilakukan oleh kelompoknya sendiri. 

Apabila ditemukan menggunakan data dari kelompok lain, praktikan akan dianggap gagal untuk modul 
tersebut 

7. Praktikan yang gagal diwajibkan untuk membayar denda susulan sebesar 
a. Rp 50.000,- untuk pertemuan atau modul pertama 
b. Rp 75.000,- untuk pertemuan atau modul kedua 

8. Ketidakhadiran dengan alasan apapun, termasuk gagal, izin, sakit, dan alpha, hanya diizinkan 
maksimal dua kali. Apabila melebihi dua kali, praktikan yang bersangkutan tidak lulus 
praktikum. 

9. Selama praktikum, praktikan harus menjaga kebersihan, ketertiban, dan kenyamanan lingkungan 
laboratorium. Praktikan juga wajib menjaga keselamatan dirinya. Selama berada di laboratorium, 
praktikan dilarang mengenakan sandal dan/atau baju kaos, merokok, makan, atau mengganggu 
kelompok lain. 

10. Selama praktikum, praktikan dilarang meninggalkan ruangan laboratorium tanpa seizin Asisten 

Laboratorium. 
11. Praktikan harus mengembalikan meja praktikum kembali ke kondisi awal setelah praktikum selesai. 

Sisa-sisa kabel, komponen yang terbakar, kertas, dan benda-benda lain yang sudah tidak terpakai dapat 
dibuang pada tempat yang telah disediakan. 

12. Setelah praktikum selesai, salinan data wajib diserahkan kepada Asisten Laboratorium pada hari itu juga 
13. Praktikan harus mengganti komponen-komponen yang hilang atau rusak. Penggantian dapat 

diambil dari uang jaminan, namun praktikan juga dapat menambahkan atau mengganti alat atau 
komponen yang sama. 
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14. Praktikan harus meminta tanda tangan Asisten Laboratorium pada Kartu Praktikum dan salinan 
lampiran data pengamatannya. 

15. Praktikan dapat diberikan peringatan atau dikelarkan apabila melanggar tata tertib ini 

 
Sistem Penilaian Praktikum terdiri dari: 

 Laporan Pendahuluan 
o Sistematika Penulisan dan Bahasa 
o Teori Dasar 
o Tugas Pendahuluan 
o Simulasi 

 Penilaian Kerja 
o Penggunaan Alat Ukur 
o Prosedur Praktikum 
o Perakitan Rangkaian 
o Pengambilan Data 
o Kerja Sama Tim 
o Kerapihan Meja Kerja 

 Laporan Akhir 
o Sistematika Penulisan dan Bahasa 
o Data Pengamatan 
o Analisis 
o Kesimpulan 
o Tugas Akhir 

 
dengan Komponen Penilaian: 

 Praktikum  50% 
o Tes Pendahuluan  30% 
o Lap. Pendahuluan 20% 
o Kerja   25% 
o Lap. Akhir  25% 

 Proyek Alat  25% 
o Presentasi  40% 
o Paper   30% 
o Alat   30% 

 UAS   25% 

 Total   100% 
 

Depok, 20 Februari 2018 
Ketua Laboratorium Elektronika 

 
 
 
 

Sastra Kusuma Wijaya, Ph.D
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MODULE 1 
DIGITAL INTEGRATED CIRCUITS: AND GATE, OR GATE, THE 

INVERTER, THE NOR GATE, THE NAND GATE 

 

OBJECTIVES 

1. To become familiar with the characteristics and 
symbols of and AND gate and an OR Gate. 

2. To determine experimentally the truth table of a 
combined AND gate and OR gate. 

3. To determine experimentally the truth table for a 
NOR gate. 

4. To use NOR logic to construct a logic inverter. 
5. To use NOR logic to construct a NAND gate and 

determine a truth table for this gate. 

 

BASIC INFORMATIONS 

In this preceding experiments you worked with linear 
ICs. In the remaining experiments you will study 
digital ICs. Digital ICs are logic circuits, the building 
blocks of digital computers and calculators. The basic 
digital circuits are rather simple and will serve as an 
introduction to digital ICs.  

Logic Circuits 

In digital electronics, a gate is a logic circuit with one 
output and one or more inputs; an output signal occurs 
for certain combinations of input signals. In this 
experiment we examine the AND and OR Gate. 

Logic circuits can be in one of two states such as on or 
off, high or low, magnetized or unmagnetized, and so 
on. A toggle switch is a simple example of a two-state 
device. 

AND Gate 

Figure 1.1 shows a diode circuit with a switch input 
and a load resistor of 100 kΩ. The supply voltage is +5 
V. when the switch is in the ground position, the diode 
is forward-biased and approximately 0.7 V appears 
across the diode. Therefore, the output voltage is low 
when the input is low. 

 

 
Figure 1.1. A forward-biased diode acts like a closed switch. 

On the other hand, when the switch is at +5 V, the net 
voltage across the diode-resistor combination is 0. As 
a result, the diode is non-conducting. Since there is no 
current though the load resistor, the output is pulled up 
to the supply voltage. In other words, the output is 
HIGH (+5 V) when the input is HIGH. 

Now look at the two-input AND gate of figure 1.2(a). 
When both switches are in the ground position, both 
diodes are conducting and the output is low. If S1 is 
switched to +5V and S2 is left in the ground position, 
then the output is still low because D2 still conducts. 
Conversely, if S1 is in the ground position and S2 is at 
+5V, diode D1 is conducting and the output is still low. 

The only way to get a high output with and AND gate 
is to have all input high. If S1 and S2 are both at +5V, 
both diodes are non-conducting. In this case, the 
output is pulled up to the supply voltage because there 
is no current through the load resistor. By adding more 
diodes and switches, we can get 3-input AND gates, 4-
input AND gates, and so on. Regardless of how many 
inputs and AND gate has, the operation is the same 
because it is an all-or-nothing gate. That is, all inputs 
must be high to get a high output. If any input is low, 
the output is low.  
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Figure 1.2. AND gate. (a) Diode circuit; (b) 2-input; (c) 3-

input; (d) 4-input. 

Transistors, MOSFETs, and other devices can also be 
used in the construction of AND gates. Figure 1.2(b) 
shows the schematic symbol for a 2-input AND gate of 
any design. Figure 1.2(c) shows the symbol for a 3-
input AND gate, while figure 1.2(d) is the 4-input AND 

gate. For these AND gates the action can be 
summarized like this: All inputs must be high to get a 
high output. 

Truth Table for Two-Input AND Gate 

The action of logic circuit is usually summarized in the 
form of truth tables. These are tables that show the 
output for all combinations of the input signals. Table 
1.1 shows the truth table for a 2-input AND gate. 

Binary means ‘two’. Computers use the binary number 
system. Rather than having digits 0 to 9, a binary 
number system has only digits 0 and 1. This is better 
suited to digital electronics where the signals are low 
or high, switches are open or closed, lights are off or 
on, and so on. In our experiments, we will use positive 
logic; this means binary 0 represents the low state and 
binary 1 represents the high state. With this in mind, 
table 1.2 is the truth table of a 2-input AND gate as it is 
usually shown. This gives the same information as 

table 1.1, expect it uses a binary code where 0 is low 
and 1 is high. 

Table 1.1. Two-input AND Gate 

Inputs 
Output 

A B 
Low Low Low 
Low High Low 
High Low Low 
High High High 

 

Table 1.2. Two-input AND Gate 

Inputs 
Output 

A B 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

OR Gate and Truth Table 

Figure 1.3(a) shows 2-input OR gate. When both 
switches are in the ground position, the diodes are non-
conducting, and the output is low. If either switch is 
set to +5V, then its diode conducts and the output is 
approximately +4.3V. In fact, both switches can be at 
+5V and the output will be around +4.3V (the diodes 
are in parallel). 

Therefore, if either input is high or if both are high, the 
output is high. Table 1.3 summarizes the operation of 
a 2-input OR gate in terms of binary 0s and 1s. As you 
see, if both inputs are low, the output is low. If either 
input is high, the output is high. If both inputs are high, 
the output is high. 
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Figure 1.3. OR Gate. (a) Diode circuit; (b) 2-input; (c) 3-input; 

(d) 4-input 

Unlike the AND gate where all inputs must be high to 
get a high output, the OR gate has a high output if any 
input is high. Figure 1.3(b) shows the symbol for a 
two-input OR gate. By adding more diodes to the gate, 
we can produce 3-input OR gates, 4-input OR gates, 
and so on. Figures 1.3(c) and (d) show the schematic 
symbols for 3- and 4-input OR gates of any design. 

Table 1.3. Two-input OR gate 

Inputs 
Output 

A B 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

Combined AND-OR Gates 

Combinations of AND and OR gates may be used to 
perform complex logic operation in computers. Figure 
1.4 is an example of combining AND and OR gates. 
Figure 1.4 is an example of combining AND and OR 

gates. To analyze this circuit, consider what happens 
for all possible inputs starting with all low, one low, 
and so on. For instance, if all inputs are low, the AND 

gate has a low output; therefore, both inputs to the OR 

gate are low and the final output is low. This is the first 
entry sown in table 1.4. 

Next, consider A low, B low, and C high. The OR gate 
has a high input; therefore, its final output is high. This 
is the second entry in table 1.4. By analyzing the 
remaining input combinations, you can get the other 
entries shown in the truth table. (you should analyze 
the remaining entries.) 

IC Gates 

Nowadays, most logic circuits are available as ICs. 
Transistor-transistor Logic (TTL) became 
commercially available in 1964. Since then, it has 
become the most popular family of digital ICs. In this 
experiment you will work with TTL gates.  

An IC 7408, one of the many available ICs in the TTL 
family. As you see, this dual in-line package contains 
4 AND gates. For this reason, it is called quad two-input 
AND gate. Notice that pin14 is the supply pin. For TTL 
devices to work properly, the supply voltage must be 
between +4.75 and +5.25 V. This is why +5V is the 

nominal supply voltage specified for all TTL devices. 
Notice also pin 7, the common ground for the chip. 
The other pins are for inputs and outputs.  

 
Figure 1.4. AND-OR Circuit 

The four AND gates are independent of each other. In 
other words, they can be connected to each other or to 
other TTL devices such as the quad two-input OR gate 
(IC 7432). Again, notice pin 14 connects to the supply 
voltage and pin 7 to ground. 

Table 1.4. AND-OR Circuit  

Inputs 
Output 

A B C 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 

Boolean Equations 

Boolean algebra is a special algebra used with logic 
circuits. In Boolean algebra, the variables can have 
only one of two values: 0 or 1. Another thing that is 
different about Boolean algebra is the meaning of the 
plus and times signs. In Boolean algebra, the ‘+’ sign 
stands for the OR operation. For instance, if the inputs 
to an OR gate are A and B, the output Y is given by 

BAY   

Read this equation as Y equals A OR B. Similarly, the 
* sign is used for the AND operation. Therefore, the 
output of a 2-input AND gate is written as 

BAY *  

or simply as 

Y = AB 

Read this as Y equals A AND B. 

These expressions can be combined to describe any 
logic circuit. For instance, the AND gate in figure 1.4 
can be expressed in Boolean algebra as AB. This 
output supplies one input to the OR gate whose output 
(and the final output of the circuit) is 
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CABY   

NOT Logic 

A NOT circuit is simply an inverter, as in figure 1.5(a) 
-an amplifier, biased to cut off- whose output is 180o 
out of phase with its input. When 0 V (a logic low) or 
no input is applied, the transistor is cut off and the 
output is at VCC; that is, it is high. When +5 V (+VCC 
or a logic high) is applied to the base, the transistor 
saturates driving the collector voltage to 0.1 V, a logic 
low. The schematic symbol for a NOT or INVERTER 

circuit is shown in figure 1.5(b). 

The Boolean expression for the characteristics of an 
inverter is given by 

AY   

The bar over the A represents NOT. Thus, if the letter 

A represents a high level (1). A  Represents low, and if 

A = 0, 1A . 

The 7404 IC is a TTL gate with six inverters. As with 
the 7408 and 7432, pin 14 is the supply and pin 7 is the 
ground. 

 

(a) 

 

(b) 

Figure 1.5. (a) NOT or Inverter Circuit; (b) Logic Symbol 

NOR and NAND Gate 

The three building-block circuits, AND, OR, and NOT, 
serve as the basis for other logic circuits. The NOR gate 
combines NOT and OR logic. What characterizes a NOR 

circuit is that a low input is produced when a high 

signal is applied to input A, nor to input B, nor to input 
N, nor to any combination of inputs. A high output is 
produced when all the inputs are low. Thus the output 
states for the NOT-OR or NOR are the inverse of the OR 

gate.  

Figure 1.6 is a schematic symbol for a NOR gate with 
two inputs. The truth table of a 2-input NOR gate is 
shown in table 2.1, and the Boolean expression for a 
NOR gate is given by 

BAY   

A circuit which combines the NOT and AND functions 
is called a NAND gate. A 2-input NAND gate is show in 
figure 1.7, and its truth table is shown in table 1.6. The 
output is like that which would be produced by a NOT 

AND Circuit; hence the term ‘NAND’. The NAND gate 
is therefore an AND gate with its output inverted. The 
Boolean expression for NAND gate is 

CBA   

TTL Logic Chips 

Present state of the art employs integrated-circuit (IC) 
TTL logic in the manufacture of NOT, NOR, and NAND 

gates. ICs are nicknamed ‘chips’ because the actual 
electronics are manufactured on small-size substrates 
that appear as chips from a larger block of material. In 
this experiment you will use the 7427, a TTL positive-
logic IC. This device is a triple 3-input NOR gate. 

Figure 1.8 is a top view of the 7427 showing the inputs 
and outputs of each of the three gates. Also shown are 
the connection for +VCC, terminal 14, and the 
connection for the ground in terminal 7. The 7427 
operates with a supply +5V. 

De Morgan’s Theorem 

It is desirable to connect gates together in as few a 
number as possible to create a desired output result 
given a fixed set of input conditions. Alternatively, it 
may be necessary to utilize one type of gate to produce 
several other logic functions. Purchasing one IC type 
in bulk quantity has the advantage of reducing the cost 
of these chips. 

 
Figure 1.6. Two-input NOR-gate Logic Symbol 

Two theories are used to facilitate the objectives. The 
firs, Boolean Algebra, utilizes rules based on logic 
gate operations. The later, De Morgan’s Theorem, is 
examined here.  

RA

R1

RL

+5V

INPUT

Vout

INPUT OUTPUT
(A) (Y)

OUTPUTINPUT

A

B
Y
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Table 1.5. Two Input NOR-Gate 

A B C 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

CBA   

De Morgan states, simply, that the inverse of Boolean 
relationship is expressed as a new relationship that is 
the opposite in value and function of the original. That 

is, the state of the input is inverted (A to A ) and the 
function is inverted (OR to AND and AND to OR). To 
apply this concept, consider the Boolean expression 
for a NOR gate.  

To ‘demorganize’ that expression, first invert each 
input and the function, so that the Boolean expression 
becomes 

BAY   

De Morgan’s theorem states that these two expressions 
are identical; that 

BABA   

The truth tables for these two produce results the same 
as those of table 1.5. Take one set of inputs, say, A = 
0 and B = 0, and apply them to both expressions. The 
original NOR expression says A + B inverted. 0 + 0 
results in a zero. Inverting this produces a final result 
of 1.  

 
Figure 1.7. Two-input NAND-gate Logic Symbol 

Now the demorganized expression, an inverted is AND 

with B inverted. In this example, a 0 inverted is a 1, 
and 1 AND 1 produces a result of 1. Note that both 
expressions produced the same result for the same 
input condition. 

Table 1.6. Two-input AND-Gate 

A B C 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

CBA   

 

SUMMARY 

1. Digital electronics deals with voltages that are in 
one of two states, either high or low.  

2. Digital circuits are called logic circuits because 
certain combinations of inputs determine the 
output. 

3. In positive logic, a binary 0 represents low voltage 
and a binary 1 is high voltage.  

4. The simplest logic circuits are 2-input OR gates 
and 2-input AND gates 

5. All inputs must be high to get a high output an 
AND gate 

6. An OR gate has a high output if any input is high. 
7. A truth table is a concise summary of all input 

output combinations. 
8. TTL is the most popular family of digital ICs. 
9. A NOT circuit is a logic inverter, converting a 

binary 1 into a 0 or a 0 into a 1 
10. A NOR gate is an OR circuit whose output is 

inverted. It is a NOT OR gate 

11. A NAND gate is an AND circuit whose output is 
inverted. 

12. The truth table of NAND gate is that of an AND 

gate, with the output inverted. 
 

 
POSITIVE LOGIC: YCBA   

Figure 1.8. Top View and Block Diagram of a 7427 

 

SELF-TEST 

1. Are digital circuits the same as linear circuits? 
2. In a 3-input AND gate all inputs must be ______ to 

get a ______ output. 
3. In a 4-input OR gate at least ______ input must be 

high to get a ______ output. 

4. With positive logic, a binary 0 represents the 
______ state and a binary 1 the ______ state. 

5. ______ is the most popular family of digital ICs, 
two examples being the 7408 and the 7432. The 

OUTPUTINPUT

A

B
Y
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first is a ______ 2-input AND gate and the second 
is a quad two-input OR gate. 

6. The nominal supply voltage for TTL is _____. 
7. If each of the inputs of a three-input NAND gate is 

high, the output is _______. 
8. The expression 1 + 0 represents a _______ gate, 

one of whose inputs is _______, the other 
________ 

9. A binary 1 is changed into a binary 0 by a circuit 
called a(n) ________ or _________ circuit. 

10. A circuit whose logic is the inverse of AND logic 
is called a(n)_______ gate 

11. A circuit whose logic is the inverse of OR logic is 
called a(n)_______ gate. 

12. What is the De Morgan alternate expression for a 
NAND gate? 
 

 

 

-----------------------------------------------PROCEDURE-----------------------------------------------

MATERIALS REQUIRED 

 Power Supply DC 
 Digital Multimeter 
 ICs: 7408, 7432, 7427, 7404, 7400 
 Resistors and switches 
 Logic Breadboard; Three SPDT Switches 

AND Gate 

1. Connect the circuit of figure 1.9 (remember to 
connect pin 14 to + 5V and pin 7 to ground) 

2. Set the switches as needed to get the different 
input combinations shown in table in figure 1.9. 
Record the state of the output as a 0 or 1 for each 
input possibility 

 
Inputs 

Y 
A B 
0 0  
0 1  
1 0  
1 1  

 
Figure 1.9. AND Gate Experiment 

OR Gate 

1. Connect the circuit of figure 1.10. 
2. Measure the output voltage for each input 

combination of table shown in figure 1.10. Record  

 
Inputs 

Y 
A B 
0 0  
0 1  
1 0  
1 1  

 
Figure 1.10. OR Gate Experiment 

Combined AND-OR Gate 

1. Connect the circuit of figure 1.11. 
2. Set the switches for each input shown in figure 

1.11. Record the output states as 0s and 1s. 
3. Design a 3-input circuit with any combination of 

gates to get a high output only when all inputs are 
high. Draw the circuit! 

4. Verify the circuit experimentally. Record your 
results in a truth table. What is the Boolean 
expression of this circuit? 

5. Design a 4-input OR gate using any combination 
of gates. Draw the circuit. 

+5V

7408

A

B

Y

S1

S2

1

2

3

+5V

S1

S2

A

B

Y

1

2

7432
3
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6. Verify the circuit experimentally and record the 
results in a truth table. What is the Boolean 
expression of this circuit? 

 
Inputs 

Y 
A B C 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

Figure 1.11. Combined AND-OR Experiment 

 
 

NOR Gate Logic 

1. Connect the circuit shown in figure 1.12 and 
complete the truth table. Take the picture of each 
steps. 

2. Connect the circuit shown in figure 1.13 and 
complete the truth table. Take the picture of each 
steps. 

3. Connect the circuit shown in figure 1.14 and 
complete the truth table. What is the Boolean 
expression for the circuit? 

NAND Gate Logic 

1. Connect the circuit shown in figure 1.12 and 
complete the truth table (replace the 7427 with 
7410). Take the picture of each steps. 

2. Connect the circuit shown in figure 1.13 and 
complete the truth table (replace the 7427 with 
7410). Take the picture of each steps. 

3. Connect the circuit shown in figure 1.14 and 
complete the truth table (replace the 7427 with 
7410). What is the Boolean expression for the 
circuit? 

 

 

 

 

A B C OUTPUT 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

Figure 1.12.  Experimental Circuit 4 and Truth Table 4 
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A B C 
0 0  
0 1  
1 0  
1 1  

Figure 1.13. Experimental Circuit 5 and Truth Table 5 

 

A B C 
0 0  
0 1  
1 0  
1 1  

Figure 1.14. Experimental Circuit 6 and Truth Table 6 

 

QUESTIONS 

1. Using the logic family type in the experiment, 
identify the voltage level for the two logic states 
of a gate’s output. 

2. For your logic family, can unused inputs remain 
floating (open)? Explain your answer using the 
logic family characteristics as supporting 
information. 

3. How many gates can the output of a single gate in 
your logic family drive? Contrast this to other 
logic families (TTL, CMOS, etc.) 

4. What are the characteristics of a NOR gate? 
5. What are the characteristics of a NAND gate? 

21

43

1
2 12
13

A

B

C

21

43

1
2 12
13

65

A

B

C
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MODULE 2 

DIGITAL ICS: BINARY ADDITION AND THE FULL ADDER; 

DECODER AND ENCODER 

OBJECTIVES 

1. To learn the rules of binary addition. 
2. To convert a decimal into a binary number, and a 

binary into a decimal number. 
3. To explore the uniqueness of an exclusive-OR 

gate. 
4. To construct a full adder using IC logic blocks. 
5. Study of 8 to 3 lines encoder. 
6. Study of 3 to 8 lines decoder. 

 

BASIC INFORMATIONS 

Binary Number 

The binary system of arithmetic uses only two symbols 
(0 and 1) to represent all quantities. This system finds 
wide use in computers because the 0 and 1 are easily 
represented by the 2-state digital circuits. 

Counting is started in the binary system in the same 
way as in the decimal system with 0 for zero and 1 for 
one. But at 2 in the binary system there are no more 
symbols. Therefore, the same move must be taken at 
two in the binary system that is taken at 10 in the 
decimal system: It is necessary to place a 1 in the 
position to the left and start again with a 0 in the 
original position. Table 2.1 is a list of numbers shown 
in both decimal and binary form. 

The order of binary number is not designated unit, 
tens, hundreds, thousands, and so forth, as in the 
decimal system. Instead, the order is 1, 2, 4, 8, 16, 32, 
and so on, reading from right to left with the position 
farthest to the right being 1. Table 2.2 shows more 
decimal quantities and their equivalents in binary 
form. Note how the positions are numbered right to 
left. 

Table 2.1. Decimal and Binary Numbers 

Decimal Binary Decimal Binary 
0 0 6 110 
1 1 7 111 
2 10 8 1000 
3 11 9 1001 

4 100 10 1010 
5 101 11 1011 

 

These values are found by raising the base radix (2) by 
an exponential value equivalent to its position in the 
number. The smallest binary digit called the least 
significant bit (LSB) is binary digit position 0. It has a 
numerical weight of 20 = 1. The weight of the next 
digit is 21 = 2, then 22 = 4, and so forth. Notice that 
each position weight is twice that of the preceding 
digit. 

Converting binary values to decimal is achieved by 
multiplying the position weight of each digit by the 
value (1 or 0) in the position. These products are added 
to produce the final decimal equivalent of the original 
binary number. For example, let us convert 110101 to 
its decimal value. There are six binary digits with the 
LSB in rightmost place. The weights of these digits 
(bits) are LSB = 1 and then 2, 4, 8, and 16 and finally, 
32. Thus, 1101012 = 5310. The subscript denotes the 
base value of the number system used for each number 
(2 for binary and 10 for decimal). 

Table 2.2. Decimal Numbers and Their Binary Equivalents 

Binary 
Decimal 256 128 64 32 16 8 4 2 1 

34    1 0 0 0 1 0 
15      1 1 1 1 
225  1 1 1 0 0 0 0 1 
75   1 0 0 1 0 1 1 

 

The method used to convert a decimal number to its 
binary equivalent may be called divide and remainder. 
Divide the original decimal value by 2, the binary bas 
value. The result is a quotient and a remainder. The 
remainder becomes the binary number starting with 
the LSB. Divide the quotient again by 2. The 
remainder is the next binary bit. The quotient result is 
again divided by the base value with the remainder 
becoming the third binary digit. This is repeated until 
the quotient becomes 0. 
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Addition of binary quantities is very simple and is 
based on the following three rules:  

1. 0 + 0 = 0 
2. 0 + 1 = 1 
3. 1 + 1 = 0 with a 1 carry to the left 

Table 2.3 is an example of binary addition using the 
rules stated. 

The factors to be added are 75 and 225. Starting at the 
right, we have 1 + 1 = 0 with a 1 carry (rule 3).  

The next position to the left is added: 0 + 1 = 1. 0 with 
1 carried to the third position. The third position 
consists of 0 + 0 = 0 + 1(carry) = 1. This procedure 
given in binary form as 100101100, which is equal to 
256 + 32 + 8 + 4 = 300. This sum is exactly what we 
would expect to get by adding the decimal quantities 
225 and 75.  

Binary quantities can also be subtracted, multiplied, 
and divided, using rules similar to those for addition. 

Table 2.3. Adding Binary Numbers 

Binary Value 
Carry: 1 1     1 1  
225 = 0 1 1 1 0 0 0 0 1 
+75 = +0 0 1 0 0 1 0 1 1 
300 =  1 0 0 1 0 1 1 0 0 

 

Exclusive-OR Gate 

Figure 2.1(a) is a schematic diagram for a special 
circuit called an exclusive-OR. The Boolean expression 

for this circuit is .BABAY   Table 2.4 is the truth 
table for this circuit. Output Y will be high if A is low 
and B is high or the reverse is true. Output Y is low 
whenever the two inputs are both low or both high. 

Examine table 2.4 carefully and note that the output is 
in one state when the inputs agree and in another state 
when they disagree. This respect allows the exclusive 
OR to be used for comparing binary bit values. 

Table 2.4.  Exclusive-OR 

A B Y 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

The Boolean operator for an exclusive-OR is an OR 

operator (+) enclosed in a circle: . As such, another 
Boolean expression for the circuit in figure 2.1 is  

BAY   

You will find many uses for this circuit which 
packaged in its own IC (7486). The schematic symbol 
for this gate is shown in figure 2.1(b). 

Binary Half Adder and Truth Table 

The simplest binary adder is called a half adder and is 
capable of combining two binary numbers and 
providing an output and a carry when necessary. The 
first step in understanding the operation of a half adder 
is to investigate the input combinations and the 
resulting outputs based on the rules of binary addition. 
Table 2.5 is a truth table showing these combinations. 
The table shows that a binary 1 on one input with a 0 
in the other (rule 2) results in a binary 1 sum and binary 
0 carry. A binary 1 on both inputs results in a binary 0 
sum and a binary 1 carry (rule 3). A binary 0 on both 
inputs results in a binary 0 sum and binary 0 carry (rule 
1). 

Table 2.5. Truth Table for Half Adder 

Input 
Sum Carry 

A B 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

  

Consider the sum and carry as two separate truth table 
results generated by the inputs A and B. Note that the 
sum has generated an exclusive-OR table and the carry, 
an AND result. Figure 2.2 is the schematic of the circuit 
that produces this half adder truth table. 

 
(a) 

 

 
(b) 

Figure 2.1. (a) Exclusive-OR; (b) logic schematic symbol 

 
The half adder has only limited use because there are 
no provisions for a carry input from a previous adder. 
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Figure 2.2. Half Adder 

Binary Full Adder and Truth Table         

When a carry and the two quantities to be added are 
considered as inputs, the input combinations increase 
to eight as shown in table 2.6. An adder capable of 
producing the required outputs for the eight input 
combinations is called a full adder. The full adder is 
shown in the block diagram of figure 2.3. 

The full adder shown represents a single position in a 
binary-adder system. Because many such adders are 
combined in a large computer, each full adder is 

represented as a block in the computer logic diagram. 
An example of a five-position binary adder is shown 
in figure 2.4. The actual number of positions in such 
an adder depends on the size of the computer and the 
type of calculations the computer is designed for. 

Table 2.6. Truth Table for Full Adder 

Inputs Outputs 

A B C Sum Carry 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 

 
Figure 2.3. Full Adder 

 

SUMMARY 

1. The binary number system for digital computers 
uses only two symbols, 1 and 0. These have the 
same meaning as 1 and 0 in the decimal number 
system you are so familiar. 

2. In the decimal or base-10 system the value of each 
digit in a number is some power of 10 and depends 
on its position in the number. For example, in the 
number 527, the 7 is in the units (100) column and 
counts for 1 x 7, or 7; the 2 is in the tens (101) 
column and counts for 2 x 10, or 20. The 5 is in  
 
 

 
the hundreds (102) column and counts for 5 x 102 
or 500. 

3. Numbers in the binary system are formed exactly 
as they are in the decimal, except the value of a 
column is a power of 2 rather than of 10, with the 
extreme right-hand column having the value 20 or 
1. The next column on the left has the value 21 or 
2; the next 22 or 4; the next 23 or 8; and so on. The 
values of the first seven binary columns, reading 
form right to left are: 

4. To convert binary numbers to decimal, use the 
added weight process. To convert in the reverse 
direction, use the divide-and-remainder method. 
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Figure 2.4. Block Diagram of Five-Position Binary Adder 

 
5. Addition of binary numbers is based on the 

following rules: 
a. 0 + 0 = 0 
b. 1 + 0 = 1 
c. 1 + 1 = 0 with 1 carry to the left 

6. An exclusive-OR gate is a unique circuit that 
produces a 0 when the two inputs are the same and 
a one when they are opposite of each other. 

7. A half-adder is a binary adder (figure 2.2) which 
combines two binary digits and provides an output 
and a carry. A half adder has four possible input 
combinations (table 2.5). 

8. A full-adder (figure 2.3) is a binary adder which 
combines three binary digits and provides an 
output and a carry. One of the inputs may be a 
carry from a previous arithmetic operation. A full-
adder has eight possible input combinations (table 
2.6). 
 

 

 

 

SELF-TEST 

1. A number written in binary form has one and only 
one equivalent decimal value. ________ 
(true/false) 

2. The number 479 written in binary form is 
_______. 

3. The result of adding these two binary numbers, 
10011100 and 10001101 is________.  

4. The value of the number 11010011 in the decimal 
form is________. 

5. Give an example of application of decoder and 
encoder circuit! 
 
 

-----------------------------------------------PROCEDURE-----------------------------------------------

MATERIALS REQUIRED 

 Power Supply: Variable regulated low-voltage 

 Digital multimeter 

 Resistors 

 Integrated circuits 7408, 7432, 7486, 7411, 4072 

 3 SPDT Toggle Switches, LED 
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Half Adder Circuit 

1. Connect the half-adder circuit (figure 2.5) 
2. Connect pin 14 of each ICs to +5 V of the supply 

and pin 7 to the ground. 
3. Change the input as shown in table 2.7 and write 

down the condition of the output. 

 
 
 
 

Table 2.7. Logic of Half Adder 

Inputs Outputs 

A B Sum Carry 

Low Low   
Low High   
High Low   
High High   

 

 

Figure 2.5. Experimental Half Adder

Full Adder Circuit 

1. Connect the full-adder circuit (figure 2.6).  
2. Connect pin 14 of each ICs to +5 V of the supply 

and pin 7 to the ground. 
3. Change the input as shown in table and write 

down the condition of the output. 
4. Using techniques developed for the full adder, 

create a truth table for a full subtractor. What is 
the Boolean expression for the difference and 
borrow results?  
 
 
 

Table 2.8. Logic of Full Adder 

Inputs Outputs 

A B C Sum Carry 

Low Low Low   
Low Low High   
Low High Low   
Low High High   
High Low Low   
High Low High   
High High Low   
High High High   
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Figure 2.6. Experimental Full Adder

 

8 to 3 Lines Encoder Circuit 

 

Figure 2.7. Experimental Circuit of 8 to 3 Lines Encoder

 

1. Make connections as shown in figure 2.7! 
2. Connect pin 14 of each ICs to +5 V of the supply 

and pin 7 to the ground! 
3. Connect input 1 or 0 to encoder circuit as shown 

in figure 2.7 as per truth table! 
4. Switch on the instrument! 
5. Observe output on 8 bits LED display! 
6. Repeat step number 3 to 5 for other input 

combinations! 
7. Verify the truth table! 

 
 
 
 

 
Table 1.9. Truth Table for 8 to 3 Lines Encoder 

D0 D1 D2 D3 D4 D5 D6 D7 x y z 

1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 1 

0 0 0 0 1 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 1 1 1 1 
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3 to 8 Lines Decoder Circuit 

 

Figure 2.8. Experimental 3 to 8 Lines Decoder

1. Make connections as shown in figure 2.8! 
2. Connect pin 14 of each ICs to +5 V of the supply 

and pin 7 to the ground! 
3. Connect input 1 or 0 to decoder circuit as shown 

in figure 2.8 as per truth table! 
4. Switch on the instrument! 
5. Observe output on 8 bits LED display! 
6. Repeat step number 3 to 5 for other input 

combinations! 
7. Verify the truth table! 

 
 
 
 
 
 

Table 1.10. Truth Table of 3 to 8 Lines Decoder 

x y z D0 D1 D2 D3 D4 D5 D6 D7 

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 

 

QUESTIONS 

1. Why is the binary number system preferred to the 
decimal system for use in computers? 

2. What is the main difference of half-adder and full-
adder? 

3. Write the quantity 8999 in binary form! 
4. Convert the binary quantity 10011111 to its 

decimal equivalent! 
5. Explain 3 example of application of decoder and 

encoder circuit! 
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MODULE 3 

DIGITAL ICs: FLIP-FLOPS 

OBJECTIVES 

1. To construct an RS flip-flop using NOR gates. 
2. To observe the action of a D flip-flop. 
3. To observe the action of a T flip-flop. 
4. To observe the action of a JK flip-flop. 

 

BASIC INFORMATION 

RS Flip-Flop 

Figure 3.1 shows the schematic symbol for a set-reset 
latch or RS flip-flop. A high voltage (+VCC) applied to 
the set S input with a low (0 V) to the reset R input 

forces the output Q to VCC (high) and Q low (0 V). A 

high S input therefore sets the output to 15 V, where it 
remains even though the inputs are removed. 

A high reset R and low set S causes the outputs to 

switch or flip-flop to a high Q  and a low Q. This is 

referred to as the reset condition of the flip-flop. The 
circuit remains latched in its current condition until the 
reverse input conditions are applied. The circuit 
latches in either of two states. A high S inputs sets Q 
to high; a high R input resets Q to low. Output Q 
remains in a given state until triggered into the 
opposite state. 

 
Figure 3.1. Symbol for RS Flip-flop 

Table 3.1 summarizes the operation. When both 
control input are low, no change can occur in the 
output and the circuit remains latched in its last state. 
This condition is called the inactive state because 
nothing changes. 

When R is low and S is high, the circuit sets the Q 
output to a high. On the other hand, if R is high and S 

is low, the Q output resets to low. The Q output is the 

inverse of the Q output. 

Look at the final entry of table 3.1. R and S are high 
simultaneously. This is called an invalid condition; it 
is never used because it leads to paradoxical operation. 
It means you are trying to set and reset the flip-flop at 
the same time, which is a contradiction. From now on, 
an asterisk in a truth table indicates an invalid 
condition. 

Table 3.1. RS Latch 

R S Q Comment 
0 0 NC No Change 
0 1 1 Set 
1 0 0 Reset 
1 1 * Invalid 

NOR Latches 

Figure 3.2(a) is a NOR latch, or RS flip-flop. As shown 
in table 3.1, a low R and a low S produce the inactive 
state; in this state, the circuit stores or remembers. A 
low R and a high S represent the set state, while a high 
R and a low S give the reset state. Finally, a high R and 
a high S produce an invalid condition, where the output 
is uncertain; therefore, we must avoid R = 1 and S = 1 
when using NOR latch. 

 
(a) 

 
(b) 

Figure 3.2. NOR-Latch Timing Diagram 

NAND Latches 

Figure 3.3 shows an RS latch built with cross-coupled 
NAND gates. Because of the NAND-gate inversion, the 
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inactive and invalid conditions are reversed as shown 
in table 3.2. Therefore, whenever you use a NAND 

latch, you must avoid having both inputs low at the 
same time. 

 
Figure 3.3. NAND Latch  

 

Table 3.2. NAND Latch 

R S Q Comment 
0 0 * Invalid 
0 1 1 Set 
1 0 0 Reset 
1 1 NC No Change 

Clocking 

Computers use thousands of flip-flops. To coordinate 
the overall action, a square-wave signal called the 
clock is sent to each flip-flop. This signal prevents the 
flip-flops from changing states until the right time. 

Figure 3.4(a) shows a clocked RS flip-flop. The idea 
is simple. When the clock is low, the AND gates are 
disabled, and the S and R signals cannot reach the flip-
flop. But when the clock goes high, the S and R signals 
can drive the flip-flop, which then sets, resets, or does 

nothing depending on the values of S and R. The point 
is the clock controls the timing of the flip-flop action. 

Figure 3.4(b) shows the timing diagram. Q goes high 
when S is high and CLK goes high. Q returns to the 
low state when R is high and CLK goes high. Using a 
common clock signal to drive many flip-flops allows 
us to synchronize the operation of the different 
sections of a computer. 

 
(a) 

 
(b) 

Figure 3.4. (a) Clocked RS Flip-Flop; (b) Timing Diagram 

Table 3.3 summarizes the operation of the clocked RS 
flip-flop. When the clock is low, the output is latched 
in its last state. When the clock is high, the circuit will 
set if S is high or reset if R is high. CLK, R, and S all 
high simultaneously is an invalid condition, which is 
never used deliberately. 

Table 3.3. Clocked NAND Latch 

R S CLK Q 
0 0 0 NC 
0 1 0 NC 
1 0 0 NC 
1 1 0 NC 
0 0 1 NC 
0 1 1 1 
1 0 1 0 
1 1 1 * 

D Latches 

A data or D flip-flop is specifically designed to store 
the data state inputted to it and to hold that information 
until the data is changed and the flip-flop is clocked. 

Figure 3.5 shows one way to build a D latch. Because 
of the inverter, data bit D drives the S input and the 

complement D drives the R input. Therefore, a high D 
sets the latch, and a low D resets it. Table 3.4 
summarizes the operation of the D latch. Especially 
important, there is no invalid condition in this truth 
table. The inverter guarantees that S and R are always 
in opposite sites; therefore, it is impossible to set up an 
invalid condition. 

 
Figure 3.5. D Latch 
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Table 3.4. Unclocked D Latch 
D Q 
0 0 
1 1 

 
Usually, a D flip-flop is clocked as shown in figure 
3.6. When CLK is low, the AND gates are disabled and 
the RS latch remains inactive. When CLK is high, D 

and D  can pass through the AND gates and set or reset 
latch. Table 3.5 summarizes the operation. X 
represents a “don’t care” condition; it stands for either 
0 or 1. While CLK is low, the output cannot change, 
no matter what D is. When CLK is high, however, the 
output equals the input. 

 

Figure 3.6. Clocked D Latch 

 

Table 3.5. Clocked D Latch 

CLK D Q 
0 X NC 
1 0 0 
1 1 1 

Edge-triggered D Flip-Flops 

In figure 3.7(a), the time constant of the input RC 
circuit is designed to be much smaller than the clock 
pulse width. Because of this, the capacitor can charge 
fully when CLK goes high; this exponential charging 
produces a narrow positive voltage spike across the 
resistor. Later, the trailing edge of the clock pulse 
results in a narrow negative spike. 

The narrow positive spike enables the AND gates for 
an instant; the narrow negative spike does nothing. 
The effect is to activate the input gates during the 
positive spike, equivalent to sampling the value of D 
complement hit the latch inputs, forcing Q to set or 
reset. 

This kind of operation is called edge triggering 
because the flip-flop responds only when the clock is 
changing states. The triggering of figure 3.7(a) occurs 
on the positive-going edge of the clock; this is why it 
is referred to as positive-edge triggering. 

Figure 3.7(b) is the timing diagram. The crucial idea is 
this: The output can change only on the rising edge of 
the clock. Put another way, data is stored only on the 
positive-going edge. The truth table for the edge-
triggered D flip-flop except that the information under 
CLK is changed from 0 to STEADY STATE and 1 to  
,indicating a positive going transition. 

  

(a)                                                                                         (b) 

Figure 3.7. (a) Edge-triggered Flip-flip; (b) Timing Diagram 

PRESET and CLEAR 

When power is first applied, flip-flops come up in 
random states. To get some computers started, an 
operator has to push a master reset button. This is a 
CLEAR (reset) signal to all flip-fops. Also, it is 
necessary in some computers to PRESET (synonymous 
with set) certain flip-flops before a computer run. 

Figure 3.8 shows how to include both functions in a D 
flip-flop. The edge triggering is the same as previously 
described. In addition, the OR gates allow us to slip in 
a high PRESET sets the latch: a high CLEAR resets it. 

PRESET is sometimes called direct set, and RESET is 
sometimes called direct reset. The word ‘direct’ means 
unlocked. For instance, a clear signal may come from 
a push button, the output will rest when the operator 
pushes the CLEAR button. 

Logic Symbol 

Figure 3.9(a) is the logic symbol of a positive-edge 
triggered D flip-flop. The CLK input has a small 
triangle, a reminder of the edge triggering. When you 
see this symbol, remember what is means: The D input 
is sampled and stored on the rising edge of the clock. 
Also included are the PRESET and CLEAR. This means 
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a low PRESET will set the flip-flop; a low CLEAR will 
reset it. As a reminder of the phase reversal, inversion 
bubbles are shown on the PRESET and CLEAR inputs. 

 

Figure 3.8.  Edge-triggered D Flip-flop with PRESET and RESET

    

(a)                            (b) 
Figure 3.9. Symbols for edge-triggered D Flip-flop. (a) Active-
high PRESET and CLEAR; (b) Active-low PRESET and CLEAR 

Toggle Flip-Flop 

Figure 3.10(a) shows a toggle flip-flop. The outputs of 
this flip-flop switch or toggle with every positive 
transition of the input clock. Because of the cross-
coupling between the output and the inputs, the 
opposite input condition is supplied after each change 
of the output. Thus, the flip-flop will toggle to the 
opposite state when the next clock edge is applied to 
the CLK input. 

Figure 3.10(b) is a timing diagram for the toggle flip-
flop. Note that the output frequency at Q is one-half 
the frequency of the CLK input. Because of this, a 
toggle flip-flop is also known as a divide-by-2- flip-
flop. 

 
(a) 

 
 

 
(b) 

Figure 3.10. (a) Toggle Flip-flop; (b) Timing Diagram 

Edge-triggered JK Flip-Flops 

Figure 3.11(a) shows one way to build a JK flip-flop. 
As before, an RC circuit with a short time constant 
converts the rectangular CLK pulse to narrow spikes. 
The J and K inputs are control inputs; they determine 
what the circuit will do on the positive clock edge. 
When J and K are low, both inputs are disabled and the 
circuit is inactive.  

When J is low and K is high, the flip-flop is reset. On 
the other hand, when J is high and K is low, the flip-
flop is driven into the set state on the next positive CLK 
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edge. The final possibility is both J and K are high.  It 
means the flip-flop will toggle on the next positive 
clock edge. Figure 3.11(b) is a visual summary of the 
action. When J is high and K is low, the rising clock 
edge set Q to high. When J is low and K is high, the 
rising clock edge resets Q to low. Finally, if both J and 
K are high, the output toggles once each rising clock 
edge. 

 
(a) 

 
(b) 

Figure 3.11. (a) Edge Triggered JK Flip-flop; (b) Timing 
Diagram 

Table 3.6 summarizes the action. The circuit is 
inactive when the clock is low, high, or on its negative 
edge. Likewise, the circuit is inactive when J and K are 
both low. Output changes occur only on the rising edge 
of the clock as indicated by the last three entries of the 
table. The output either resets, sets, or toggle. 
 
Table 3.6. Positive-edge-triggered JK Flip-flop 

CLK J K Q 
0 X X NC 
1 X X NC 
↓ X X NC 

X 0 0 NC 
↑ 0 1 0 
↑ 1 0 1 
↑ 1 1 Toggle 

 

A variety of JK flip-flops are available in IC form. 
Figure 3.12(a) is the symbol for one type. It uses 
positive-edge triggering, and responds to high PRESET 

and CLEAR. Figure3.12(b) is a positive-edge-
triggered JK flip-flop that responds to low preset and 
clear signal. If the IC design includes an internal 
inverter on the clock input, we get negative-edge 
triggering which is preferred in some applications. As 
a reminder of this negative-edge triggering, figure 
3.12(c) has a bubble at the clock input; it also has 
active-low PRESET and CLEAR. 

 
(a)                               (b) 

 
(c) 

Figure 3.12. Symbols for JK Flip-flop. (a) Positive Edge-

triggering with Active-high PRESET and CLEAR; (b) Positive 

Edge-triggering with Active-low PRESET and CLEAR; (c) 
Negative Edge-triggering with Active-low PRESET and CLEAR

 

SUMMARY 

1. A flip-flop can remain in its last state until an 
external trigger forces it into the other state. 
Because of this, it is a memory element. 

2. In the inactive state, a flip-flop stores or 
remembers because it remains in its last state. 

3. An invalid condition when both R and S are 
high in an RS flip-flop. This undesirable state 

is forbidden because it represents a 
contradiction. 

4. One way to build an RS flip-flop is with cross-
coupled NOR gates. Alternatively, NAND gates 
can be used. 

5. Usually, a signal called the clock determines 
when a flip-flop can change states. 
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6. By including an inverter, we can convert an RS 
flip-flop into a D flip-flop. The big advantage 
of the D flip-flop is the lack of an invalid 
condition. 

7. A positive-edge-triggered D flip-flop stores 
the data bit only on the rising edge of the clock. 

8. PRESET and CLEAR allow a direct set or a 
direct reset of a flip-flop, regardless of what the 
clock is doing. 

9. A toggle flip-flop changes state with each 
clock cycle and is known as a divide-by-2 flip-
flop. 

10. Depending on the values of J and K, a JK flip-
flop will either do nothing, set, reset, or toggle. 
 

SELF-TEST 

1. RS flip-flops can be built with cross-coupled 
_________ or _________ gates. 

2. A square-wave signal called the _________ 
can synchronize the operation of many flip-
flops. 

3. A flip-flop that responds only on the rising 
_________ of the clock is called a _________. 

4. The output of a toggle flip-flop is _________ 
the frequency of the clock input. 

5. For a JK flip-flop to toggle, J must be _______ 
and K must be________. 
 

-----------------------------------------------PROCEDURE------------------------------------------------

MATERIALS REQUIRED 

 AC and DC power supply +5 V 

 Signal generator, oscilloscope 

 ICs: 7402, 7404, 7474, 7476 

 Resistors, LED, switches 

RS Latch 

1. Connect the NOR latch of figure 3.13! 
2. Set the R and S switches to the input 

combinations of table 3.7! Follow the order 

shown; record the Q and Q  outputs for each 

input! 

Table 3.7. RS Latch 

R S Q Q  

0 0   
0 1   
1 0   
1 1   

 

 
Figure 3.13. Experimental RS Latch 

D Latch 

1. Connect the clocked D latch of figure 3.14! 
2. Connect a square wave generator to the CLK 

input! Set the generator for 5 V at 1 KHz! 
3. Set the D switch to the low input! Measure and 

record Q and Q  in table 3.8! 

4. Repeat the preceding step for the D switch at 
the high input! 
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5. Remove the square-wave generator and set this 
input high! Observe that switching the D input 
does not cause the output to switch! 

Table 3.8. D Latch 

D CLK Q 

0 ↑  
1 ↑  

 

 
 
 
 
 
 
 
 

 

 
Figure 3.14. Clocked D Flip-flop

 

Edge-triggered D Flip-Flop 

1. Connect the circuit of figure 3.15! 
2. Close S1 and ground the CLK input. Open S2 

and close S3! Note that the flip-flop is in the 
reset state. Open S3, and the Q output should 
remain low (green LED on). 

3. Close S2 (preset), and the output Q should go  
to the set condition (red LED on). Open S2, and 
the flip-flop remains set. 

4. Close S1 (low input)! Remove the ground to 
CLK and replace it with the square-wave 
generator set as in step 1 D Latch! Record the 
Q output in table 3.9! 

5. Open S1 (high input)! Record the Q output in 
table 3.9! 

Table 3.9. Edge-triggered D Flip-flop 

D CLK Q 

0 ↑  
1 ↑  

 

 

 

 

 

 

 

Figure 3.15. Experimental Edge-triggered D Flip-flop 

 

JK Flip-Flop 

1. Connect the circuit of figure 3.16! Set J and K 
inputs low. Connect the square-wave generator 
to the CLK input and set it as in step 1 D Latch 
experiment! 
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2. Close S2 and open S4! Note how these presets 
the Q output. Open S2 and close S4, placing the 
J and K inputs into the reset condition! 

3. Open S2 and S4! Q should not change. If this is 
what happens, write ‘NC’ in table 3.10! 

4. Set up the other J and K inputs listed in table 
3.10! Record the Q outputs (record ‘toggle’ for 
the last entry if it is working correctly)! 

5. Leave both J and K high! Measure and 
calculate the frequency of the Q output and 
record the value here 

 
f = ____________ 

 
Table 3.10. JK Flip-flop 

J K CLK Q 

0 0 ↑  
0 1 ↑  
1 0 ↑  
1 1 ↑  

 

 

 
Figure 3.16. Experimental Edge-triggered JK Flip-flop

 

QUESTIONS 

1. Describe what the Q output did when you 
change the R and S switches! 

2. Is the D flip-flop positive- or negative-edge 
triggered? 

3. Describe what a D flip-flop of figure 3.15 did! 
4. Describe what a D latch does! 
5. Are the PRESET and CLEAR active-low or 

active-high? 
6. Explain the difference between the CLK and Q 

output frequencies!
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MODULE 4  

DIGITAL ICs: COUNTERS 

OBJECTIVES 

1. To examine Binary counting circuits. 
2. To observe Ring and Johnson counter 

operations. 

BASIC INFORMATION 

A counter is a circuit that produces a set of unique 
output combinations in relation to the number of 
applied input pulses. The number of unique outputs of 
a counter is known as its modulus, modulo, or mod 
number. 

Binary Counters 

Figure 4.1 shows a binary or ripple up counter. JK flip-
flops are used because of their versatility. The J and K 
inputs are all connected together to an ENABLE input. 
When ENABLE is OFF (low), all the JK inputs are held 
low, placing the flip-flops into a ‘no change’ 
condition. Once the ENABLE is set ON (high), the JK 
inputs are forced high and each flip-flop is set into a 
‘toggle’ condition. Each flip-flop will change state 
when a positive to negative transition is experienced 
on its CLK input. 

Applying a square-wave signal to the clock input of 
FF0 and setting ENABLE high allow FF0 to 
continuously toggle each time a clock pulse is applied.  

Flip-flop FF1 is clocked from the Q output of FF0, so 
its output has a frequency that is one-half that of FF0 

or one-fourth the frequency of the input CLK. In turn, 
FF2 is driven by FF1 and its output is on-eighth that of 
the CLK and the FF3 output is one-sixteenth summary 
of the binary counter outputs. Figure 4.2 is a timing 
diagram summary of the binary counter outputs. Note 
that the output of each flip-flop toggles when a low 
transition is applied to its clock input.  

Flip-flop FF0 is the least-significant bit in the counting 
sequence, followed in numerical weight by FF1, FF2, 
and finally FF3. Assigning 1s to high outputs and 0s to 
low-level outputs, one can construct a truth table 
(figure 4.3). Note that the outputs change sequentially 
as the number of clock cycles (count) increases. There 
are 16 different output combinations or states 
produced by this counter, which returns to all 0s on the 
sixteenth count. This makes this a mod 16 binary 
ripple up counter. 

Counting Down 

Switching the clock inputs of each flip-flop to the Q

outputs causes the counting sequence to start at 1111, 
on the first clock after releasing the reset input, down 
to 0000. The flip-flops still toggle on a positive-to-
negative transition, but this change now comes when 
the Q output of the previous flip-flop (which is the 

inverse of its Q ) goes from a low to a high. 

 

 

Figure 4.1. Binary Ripple Up Counter 
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Figure 4.2. Binary Up Counter Timing Diagram

Ring counters 

Figure 4.4 illustrates a ring counter. It is constructed 

by connecting the Q and Q  outputs from one flip-flop 

to the J and K inputs of the next flip-flop. To complete 
the ring, the outputs of the final flip-flop are wired to 
the inputs of the first flip-flop. This counter has the 
characteristic that one and only one flip-flop is set 
(Q=1) at any time. To start the counter, FF0 is set and 
the rest are reset (note the application of the start input 
to the FF0 preset input and the FF1 to FF3 reset input). 
Since the outputs of each flip-flop are connected to the 
inputs of the following unit, FF1 is receiving set inputs 
while the others are receiving reset inputs. The effect 
is that on the first clock cycle FF1 goes set while the 
rest are reset. The set condition has shifted from FF0 

to FF1. As clock cycles arrive, this set condition 
continues to shift around the ring. The process is 
illustrated in the timing diagram of figure 4.5. A truth 
table is not required for this circuit because of the 
exclusive nature of the single set flip-flop for each 
clock cycle (count). 

COUNT Q3 Q2 Q1 Q0 
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

10 1 0 1 0 
11 1 0 1 1 
12 1 1 0 0 
13 1 1 0 1 
14 1 1 1 0 
15 1 1 1 1 
16 1 0 0 0 

Figure 4.3. Binary Up Counter Truth Table 

As can be seen from the timing diagram, there are four 
unique output states for this counter, rendering it a 
mod 4 ring counter. 

Johnson Counter 

The modulo number of a ring counter can be doubled 

by switching the Q and Q  outputs of the last flip-flop 

so that the Q  output now feed the FF0 J input and Q  

the K input. This is the configuration for the Johnson 

Counter (figure 4.6) which is started at 0000. Note that 
this condition supplies reset inputs to FF1 send set 
input condition to FF0. On the first clock input, FF0 
sets while the rest remain reset. Now set inputs are 
applied to FF0 and FF1. The next clock input sets FF0 
and FF1 while resetting FF2 and FF3. The process 
continues until all four flip-flops are set as illustrated 
in figure 4.7. Once all four are set, the outputs of FF3 
then send reset inputs to FF0. On the succeeding 
clocks, the process is reversed until the counter once 
again has all reset outputs. Note from the timing 
diagram that there are now eight different output 
conditions causing this to be a mod 8 Johnson Counter. 
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Figure 4.4. Ring Counter  

 

Figure 4.5. Ring Counter Timing Diagram 

 

Figure 4.6. Johnson Counter 
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Figure 4.7. Johnson Counter Timing Diagram 

 

SUMMARY 

1. Counters are digital circuits that produce different 
output states for each applied clock cycle. 

2. An up counter yields an increasing binary count 
representation as its outputs, while a down counter 
produces a decreasing count sequence. 

3. Only one flip-flop is set in a ring counter. This set 
condition is the shifted through the ring on 
succeeding clock cycles. 

4. A Johnson counter doubles the modulo number of 
a ring counter without the addition of any 

circuitry. 
 

SELF-TEST 

1. Which flip-flops are set in figure 4.1 after 
seven clock cycles are applied following the 
release of the RESET signal? 

2. What is the highest binary number that could 
be represented by the counter in figure 4.1 if 
the CLK input to FF3 were open? 

3. Which flip-flop of the ring counter in figure 4.4 
is set on the 19th clock cycle after START is 
released? 

4. What is the state of the Johnson Counter 
outputs in figure 4.6 following nineteen clock 
cycles after the release of the reset signal? 
 
 

-----------------------------------------------PROCEDURE----------------------------------------------
 

MATERIALS REQUIRED 

 Power Supply: +5 V 

 Multimeter, Signal Generator, Oscilloscope 

 Resistors 

 ICs: 7476 

 Switches, LEDs
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Binary Up Counter 

1. Construct the binary counter of figure 4.8! 
2. Close S1 and S2! Apply a 5 Hz 5 V square wave 

to the CLK input! What is the state of the 
counter at this time? 

3. Open S2! Explain why the output does not 
change! 

4. Open S1! What is the count sequence of this 
counter? Does it count up or down? 

5. Close S1 and S2! Move the clock inputs of each 
flip-flop except FF0 from the Q outputs to the 

Q  outputs. Be careful to leave the 1 kΩ 

resistors and LEDs connected to the Q outputs! 
6. Open S1 and S2! Is the counter counting up or 

down? What is the modulo number for this 
counter? 

Ring Counter 

1. Construct the ring counter of figure 4.9! 
2. Apply the 5 Hz 5 V square wave to the CLK 

input! 

3. Close S1! What is the state of the outputs of the 
counter? 

4. Open S1! Draw a timing diagram for six clock 
cycles! What is the modulo number for this 
counter? What would happen to the operation 
of the circuit if the reset of FF0 were connected 
to the start input instead of the preset? Perform 
this test and verify your answer! 

5. Close S1! Switch the Q and Q  connections of 

FF3! Keep the 1 kΩ resistor and LED 
connected to the Q output! Remove the +5 V 
to the reset of FF0! Move the start input to the 
preset of FF0 to its reset input and connect the 
preset to +5 V+! What is the state of the outputs 
of the counter? 

6. Open S1! Draw the timing diagram for 10 clock 
cycles! What is the name and modulo number 
of this counter? 
 

 
Figure 4.8 Experimental Binary Up Counter 
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Figure 4.9. Experimental Ring Counter 

 

QUESTIONS 

1. Answer the questions listed in the procedure of 
every step! 

2. Explain the output differences between a 
binary or ripple up counter and a ring counter! 

3. How does a Johnson counter differ form a ring 
counter? 

4. List an advantage for each type of counter used 
in this experiment! 
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MODULE 5 

THE 555 TIMER 

OBJECTIVES 

1. To measure the frequency and duty cycle of an 
astable 555 timer. 

2. To measure the pulse width out of a monostable 
555 timer. 

3. To examine the signal out of a voltage-controlled 
oscillator. 

4. To build a sawtooth generator using a 555 timer. 

BASIC INFORMATION 

Basic Timing Concept 

Figure 5.1 (a) illustrates some basic ideas needed in 
our later discussion of the 555 timer. Assume output Q 
is high. This saturates transistor and clamps the 
capacitor voltage at ground. In other words, the 
capacitor is short-circuited and cannot charge. 

The non-inverting input voltage of the op amp is called 
the threshold voltage, and the inverting input voltage 
is referred to as the control voltage. With the RS flip-
flop set, the saturated transistor holds the threshold 
voltage divider. 

Suppose we apply a high voltage to the R input. This 
resets the RS flip-flop. Output Q goes to 0 and this cuts 
off the transistor. Capacitor C is now free to charge. 
As the capacitor charges, the threshold voltage 
increases. 

 
(a) 

 
(b) 

Figure 5.1. Basic Timing Concept 

Eventually, the threshold voltage becomes slightly 
greater than the control voltage (+10 V). The output of 
the op-amp then goes high, forcing the RS flip-flop to 
set. The high Q output saturates the transistor and this 
quickly discharges the capacitor. 

Notice the two waveforms in figure 5.1(b). An 
exponential rise is across the capacitor, and a positive 

going pulse appears at the Q  output. 

555 Block Diagram 

The NE555 timer introduced by Signetics is an 8-pin 
IC that can be connected to external components for 
either astable or monostable operation. Figure 5.2 
shows a simplified block diagram. Notice the upper 
op-amp has a threshold input (pin 6) and a control 
input (pin 5). In most applications, the control input is 
not used, so that the control voltage equals +2VCC/3 
developed by the three 5 kΩ voltage divider. As 
before, whenever the threshold voltage exceeds the 
control voltage, the high output from the op-amp will 
set the flip-flop. 

The collector of the discharge transistor goes to pin 7. 
When this pin is connected to and external timing 
capacitor, a high Q output from the flip-flop will 
saturate the transistor and discharge the capacitor. 
When Q is low, the transistor opens and the capacitor 
can charge as previously described. 

The complementary signal out of the flip-flop goes to 
pin 3, the output. When the external reset (pin 4) is 
grounded, it inhibits the device (prevents it from 
working). This ON-OFF feature is useful sometimes. In 
most applications, however, the external reset is not 
used and pin 4 is tied directly to the supply voltage. 

Notice the lower op-amp. Its inverting input is called 
the trigger (pin 2). Because of the voltage divider, the 
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non-inverting input has a fixed voltage of +VCC/3. 
When the trigger input voltage is slightly less than 
+VCC/3, the op-amp output goes high and resets the 
flip-flop.  

Finally, pin 1 is the chip ground, while pin 8 is the 
supply pin. The 555 timer will work with any supply 
voltage between 4.5 and 16 V. 

 

Figure 5.2. Block Diagram of 555 Timer 

Monostable Operation 

Figure 5.3(a) shows the 555 timer connected for 
monostable (one-shot) operation. It produces a single 
fixed pulse out each time a trigger pulse is applied to 
pin 2 (figure 5.3(b)). When the trigger input is slightly 
less than +VCC/3, the lower op-amp has a high output 
and resets the flip-flop. This cuts off the transistor, 
allowing the capacitor to charge. 

When the threshold voltage is slightly greater than 
+2VCC/3, the upper op-amp has a high output, which 
sets the flip-flop. As soon as Q goes high, it turns on 
the transistor; this quickly discharges the capacitor. 

The trigger input is a narrow pulse with a quiescent 
value of +VCC. The pulse must drop below +VCC/3 to 
reset the flip-flop sets; this saturates the transistor and 
discharges the capacitor. As a result, we get one 
rectangular output pulse.  

The capacitor C has to charge through resistance R. 
The larger the RC time constant, the longer it takes for 
the capacitor voltage to reach +2VCC/3. In other words, 
the RC time constant controls the width of the output 
pulse. Solving the exponential equation for capacitor 
voltage gives this formula for the pulse width 

)(1.1 RCW   

For instance, if R = 22 kΩ and C = 0.068 µF, then the 
output of the monostable 555 timer is 

� = 1.1	�	22(10�)	�	0.068(10��) = 1.65	�� 

 

(a) 

 

(b) 

Figure 5.3. (a) Monostable Operation; (b) Waveforms 

Normally, a schematic diagram does not show the op-
amps, flip-flop, and other components inside the 555 
timer. Rather, you will see a schematic diagram like 
figure 5.4 for the monostable 555 timer. Incidentally, 
notice that pin 5 (control) is bypassed to ground 
through a small capacitor, typically 0.01 µF. This 
provides noise filtering for the control voltage. 

 

Figure 5.4. Monostable 555 Timer 

Astable Operation 

Figure 5.5(a) shows the 555 timer connected for 
astable or free-running operation. The output is a 
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square-wave signal. When Q is low, the transistor is 
cut off and the capacitor is charging through a total 
resistance of RA + RB. Because of this, the charging 
time constant is (RA+RB)C. As the capacitor charges, 
the threshold voltage increases. 

Eventually, the threshold voltage exceeds +2VCC/3; 
then the upper op-amp has a high output and this sets 
the flip-flop. With Q high, the transistor saturates and 
grounds pin 7. Now the capacitor discharges through 
RB. Therefore, the discharging time constant in RBC. 
When the capacitor voltage drops slightly below 
+VCC/3, the lower op-amp has a high output and this 
resets the flip-flop. 

Figure 5.5(b) illustrates the waveforms. As you see, 
the timing capacitor has an exponentially rising and 
falling voltage. The output is a rectangular wave. Since 
the charging time constant is longer that the 
discharging time constant, the output is not 
symmetrical; the high state lasts longer than the low 
state. 

 
(a) 

 
(b) 

Figure 5.5. (a) Astable Operation; (b) Waveforms 

To specify how asymmetric the output is, we will use 
the duty cycle defined as 

� =
�

�
	�	100% 

Depending on resistances RA and RB, the duty cycle is 
between 50 and 100 percent. 

A mathematical solution to the charging and 
discharging equations gives the following formulas. 
The output frequency is 

� =
1.44

(�� + 2��)
	�	100% 

And the duty cycle is 

� = 	
(�� + ��)

(�� + 2��)
	�	100% 

If RA is much smaller than RB, the duty cycle 
approaches 50 percent. 

Figure 5.6 shows the astable 555 timer as it usually 
appears. Again notice how pin 4 (reset) is tied to the 
supply voltage and how pin 5 (control) is bypassed to 
ground through a 0.01 µF capacitor. 

 
Figure 5.6. Astable 555 Timer 

Voltage-Controlled Oscillator 

Figure 5.7(a) shows a voltage-controlled oscillator 
(VCO). Recall that pin 5 (control) connects to the 
inverting input of the upper op-amp. Normally, the 
control voltage is +2VCC/3 because of the internal 
voltage divider. In figure 5.7(a), however, the voltage 
from an external potentiometer overrides the internal 
voltage. In other words, by adjusting the 
potentiometer, we can change the control voltage. 
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Figure 5.7(b) illustrates the voltage across the timing 
capacitor. Note that it varies between +Vcontrol/2 and 
+Vcontrol. If we increase Vcontrol, it takes the capacitor 
longer to charge and discharge therefore, the 
frequency decreases. As a result, we can change the 
frequency of the circuit by varying the control voltage.  

Incidentally, the control voltage may come from a 
potentiometer or it may be the output of another 
transition circuit, op-amp, and so on. 

 

(a) 

 

(b) 

Figure 5.7. (a) Voltage-controlled Oscillator; (b) Waveform 

Sawtooth Generator 

A constant charging current produces linear ramp of 
voltage across a capacitor. The PNP transistor of 
figure 5.8(a) produces a constant charging current 
equal to 

�� = 	
��� ��

�
 

where 

�� = ��� +	
��

�� + ��
��� 

For instance, if VCC = 15 V, R = 20 kΩ, R1 = 5 kΩ, R2 
= 10 kΩ, and VBE = 0.7 V, then  

�� = 0.7	� + 10	� = 10.7	� 

and 

�� = 	
��	����.�	�	

��	��
= 0.215	��   

When a trigger starts the monostable 555 timer of 
figure 5.8(a), the PNP current source forces a constant 
charging current into the capacitor. Therefore, the 
voltage across the capacitor is a linear ramp as shown 
in figure 5.8(b). The slope S of the linear ramp is 
defined as the rise over the run, or 

T

V
S   

where V is the peak voltage at time. For instance, if V 
= 10 V and T = 2 ms, then the slope S is 5 V/ms. This 
says the ramp rises 5 V/ms. 

Since the basic capacitor equation is 

C

Q
V   

we can divide both sides by T to get 

C

TQ

T

V /
  

When the charging current is constant, this reduces to 

C

I
S   

In other words, you can predict the slope of a linear 
ramp using the ratio of charging current to 
capacitance. If the charging current is 0.215 mA 
(found earlier) and the capacitance is 0.022 µF, the 
ramp will have a slope of 

msV
F

mA
S /77.9

µ022.0

215.0
  

 

(a) 
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(b) 

Figure 5.8. (a) Sawtooth Generator; (b) Waveform 

  

SUMMARY 

1. A high set (S) input sets the output of an RS flip-
flop to the high state. A high Reset (S) input resets 
the output to the low state. 

2. In a 555 timer the non-inverting input of the upper 
op-amp is called the threshold voltage; the 
inverting input is called the control voltage. 

3. When the threshold voltage exceeds the control 
voltage, the RS flip-flop is set. This saturates the 
discharge transistor. 

4. The inverting input of the lower op-amp in a 555 
is called the trigger. 

5. When trigger voltage is less than +VCC/3, the RS 
flip-flop is reset. This cuts off the discharge 
transistor. 

6. The 555 timer can be connected for astable and 
monostable operation. 

7. Normally, the control voltage of a 555 timer 
equals +2VCC/3 because of the internal voltage 
divider. In VCO application, however, an external 
voltage is applied to the control pin override the 
voltage from the internal voltage divider. 

8. By using a PNP current source, the 555 timer can 
produce linear amps. 

 

 

SELF-TEST 

1. To saturate the transistor of figure 5.2(a), the Q 
output must be _______ V. 

2. In figure 3.2(a), the control voltage equals 
_______ V. 

3. To set the RS flip-flop of figure 5.3, the threshold 
voltage must be slightly greater than the 
________ voltage. 

4. In figure 5.5, R = 68 kΩ and C = 0.050 µF. The 
pulse width of the output is ________ ms. 

5. In figure 5.7, if RA = 27 kΩ, RB = 70 kΩ, and C = 
0.22µF. The frequency of the output is ______ Hz 
and the duty cycle is _______ percent. 

 

 

 

 

----------------------------------------PROCEDURE----------------------------------------

MATERIALS REQUIRED 

 Regulated AC/DC Power Supply ~ +15 V 

 Oscilloscope, signal Generator 

 Resistors, Capacitors, Potentiometer, Transistors 

 ICs: Op-Amp 741, NE555 Timer 
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Astable 555 timer 

1. Calculate the frequency and duty cycle in figure 
5.9 for the resistances listed in table 5.1. Record 
the results under fcalculated and Dcalculated! 

2. Connect the circuit of figure 5.9 with RA = 10 kΩ 
and RB = 100 kΩ! 

3. Measure W and T. Work out the frequency and 
duty factor. Record under fmeasured and Dmeasured in 
table 5.1! 

4. Look at the voltage across the capacitor (pin 6). 
You should see an exponentially rising and falling 
wave between 5 V and 10 V! 

5. Repeat steps 2 through 4 for the other resistances 
of table 5.1! 

 
Figure 5.9. Experimental Astable 555 Timer 

Table 5.1. Astable Operation 

RA (kΩ) RB (kΩ) fcalc Dcalc fmeas Dmeas 

47 100     

100 47     

47 47     

 

Voltage Controlled Oscillator 

1. Connect the circuit of VCO in figure 5.10! 
2. Look at the output with an oscilloscope! 
3. Vary the 1 kΩ potentiometer and notice what 

happens. Record the maximum and minimum 
frequencies of the output! 

 
fmaximum  = _____________ 

 
fminimum  = _____________ 

 

 
Figure 5.10. Experimental Voltage-controlled Oscillator 

Monostable 555 Timer 

1. Figure 5.11 shows a Schmitt trigger driving 
monostable 555 timer. Calculate the pulse width 
for each R listed in table 5.2! Record the results 
under Wcalculated! 

2. Connect the circuit of figure 5.11 with an R of 33 
kΩ! 

3. Look at the output of the Schmitt trigger (pin 6 of 
741). Set the frequency of the sine-wave input to 
1 KHz.! 

4. Adjust the sine-wave level until you get a Schmitt 
trigger output with a duty cycle of approximately 
90%! 

5. Look at the output of the 555 timer and measure 
the pulse width! Record this value under Wmeasured 
in table 5.2! 

6. Repeat steps 2-5 for the remaining values of table 
5.2! 

Table 5.2. Monostable Operation 

R (kΩ) Wcalc Wmeas 

22   

33   

47   
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Figure 5.11. Experimental Monostable Operation

 

Sawtooth Generator 

1. Calculate the charging current in figure 5.12 for 
each value of R shown in table 5.3. Record the 
values! 

2. Calculate the slope of capacitor voltage in 
volts/milisecond. Record under Scalculaied in table 
5.3! 

3. Connect the circuit of figure 5.12 with an R of 10 
kΩ! 

4. Set the signal generator to 1 KHz of AC 
frequency! Adjust the level to get a duty cycle of 
approximately 90 percent out of the Schmitt 
trigger! 

5. Look at the output voltage! It should be a 
sawtooth. Measure the ramp voltage and time! 
Then, work out the slope in voltages/milisecond. 
Record the value under Smeasured in table 5.3! 

6. Repeat steps 3 through 5 for the remaining values 
of R in table 5.3! 

Table 5.3. Sawtooth Generator 

R (kΩ) Icharge (mA) Scalc (V/ms)  Smeas (V/ms) 

10    

33    

47    

 

 
Figure 5.12. Experimental Sawtooth Generator

QUESTIONS 

1. How does the ratio of RA and RB affect the duty 
cycle of an astable 555 timer? 

2. What effect does R have on the sawtooth? 
3. What happens to the width of the output if the 

timing resistor is increased? 

4. What effect does increasing the timing capacitor 
have on the frequency out of an astable 555 timer? 
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MODULE 6 
HALF ADDER, FULL ADDER, AND DECODER USING VHDL 

 

OBJECTIVES 
1. To create a new project in Vivado™ using VHDL 
2. To use the provided ZYBO Master Constraint file 

to constrain the pin locations 
3. To design and construct Half Adder, Full Adder, 

and Encoder logic using VHDL 
4. To simulate, synthesize, and implement the 

design 
5. To program the completed design onto the ZYBO 

Development Board FPGA 
 

BASIC INFORMATIONS 
Binary Number 
The binary system of arithmetic uses only two symbols 
(0 and 1) to represent all quantities. This system finds 
wide use in computers because the 0 and 1 are easily 
represented by the 2-state digital circuits. 
Counting is started in the binary system in the same 
way as in the decimal system with 0 for zero and 1 for 
one. But at 2 in the binary system there are no more 
symbols. Therefore, the same move must be taken at 
two in the binary system that is taken at 10 in the 
decimal system: It is necessary to place a 1 in the 
position to the let and start again with a 0 in the original 
position. Table 6.1 is a list of numbers shown in both 
decimal and binary form. 
The order of binary number is not designated unit, 
tens, hundreds, thousands, and so forth, as in the 
decimal system. Instead, the order is 1, 2, 4, 8, 16, 32, 
and so on, reading from right to left with the position 
farthest to the right being 1. Table 6.2 shows more 
decimal quantities and their equivalents in binary 
form. Note how the positions are numbered right to 
left. 

Table 6.1. Decimal and Binary Numbers 

Decimal Binary Decimal Binary 
0 0 6 110 
1 1 7 111 
2 10 8 1000 
3 11 9 1001 
4 100 10 1010 
5 101 11 1011 

 
These values are found by raising the base radix (2) by 
an exponential value equivalent to its position in the 
number. The smallest binary digit called the least 
significant bit (LSB) is binary digit position 0. It has a 
numerical weight of 20 = 1. The weight of the next 
digit is 21 = 2, then 22 = 4, and so forth. Notice that 
each position weight is twice that of the proceeding 
digit. 

Converting binary values to decimal is achieved by 
multiplying the position weight of each digit by the 
value (1 or 0) in the position. These products are added 
to produce the final decimal equivalent of the original 
binary number. For example, let us convert 110101 to 
its decimal value. There are six binary digits with the 
LSB in rightmost place. The weights of these digits 
(bits) are LSB = 1 and then 2, 4, 8, and 16 and finally, 
32. Thus, 1101012 = 5310. The subscript denotes the 
base value of the number system used for each number 
(2 for binary and 10 for decimal). 
 

Table 6.2. Decimal Numbers and Their Binary Equivalents 

Binary 
Decimal 256 128 64 32 16 8 4 2 1 

34    1 0 0 0 1 0 
15      1 1 1 1 
225  1 1 1 0 0 0 0 1 
75   1 0 0 1 0 1 1 

 
The method used to convert a decimal number to its 
binary equivalent may be called divide and remainder. 
Divide the original decimal value by 2, the binary bas 
value. The result is a quotient and a remainder. The 
remainder becomes the binary number starting with 
the LSB. Divide the quotient again by 2. The 
remainder is the next binary bit. The quotient result is 
again divided by the base value with the remainder 
becoming the third binary digit. This is repeated until 
the quotient becomes 0. 
Addition of binary quantities is very simple and is 
based on the following three rules:  

4. 0 + 0 = 0 
5. 0 + 1 = 1 
6. 1 + 1 = 0 with a 1 carry to the left 

Table 6.3 is and example of binary addition using the 
rules stated. 
The factors to be added are 75 and 225. Starting at the 
right, we have 1 + 1 = 0 with a 1 carry (rule 3).  The 
next position to the left is added: 0 + 1 = 1. 0 with 1 
carried to the third position. The third position consists 
of 0 + 0 = 0 + 1(carry) = 1. This procedure given in 
binary form as 100101100, which is equal to 256 + 32 
+ 8 + 4 = 300. This sum is exactly what we would 
expect to get by adding the decimal quantities 225 and 
75.  
Binary quantities can also be subtracted, multiplied, 
and divided, using rules similar to those for addition. 
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Table 6.3. Adding Binary Numbers 

Binary Value 
Carry: 1 1     1 1  
225 = 0 1 1 1 0 0 0 0 1 
+75 = +0 0 1 0 0 1 0 1 1 
300 =  1 0 0 1 0 1 1 0 0 

 

Exclusive-OR Gate 
Figure 6.1(a) is a schematic diagram for a special 
circuit called an exclusive-OR. The Boolean expression 

for this circuit is .BABAY   Table 6.4 is the truth 
table for this circuit. Output Y will be high if A is low 
and B is high or the reverse is true. Output Y is low 
whenever the two inputs are both low or both high. 
Examine table 6.4 carefully and note that the output is 
in one state when the inputs agree and in another state 
when they disagree. This respect allows the exclusive 
OR to be used for comparing binary bit values. 
 

Table 6.4.  Exclusive-OR 

A B Y 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
The Boolean operator for an exclusive-OR is an OR 

operation ( + ) enclosed in a circle:  . As such, 
another Boolean expression for the circuit in figure 6.1 
is  

BAY   
You will find many uses for this circuit which 
packaged in its own IC (7486). The schematic symbol 
for this gate is shown in figure 6.1(b). 
 

Binary Half Adder and Truth Table 
The simplest binary adder is called a half adder and is 
capable of combining two binary numbers and 
providing an output and a carry when necessary. The 
first step in understanding the operation of a half adder 
is to investigate the input combinations and the 
resulting outputs based on the rules of binary addition. 
Table 2.5 is a truth table showing these combinations. 
The table shows that a binary 1 on one input with a 0 
in the other (rule 2) results in a binary 1 sum and binary 
0 carry. A binary 1 on both inputs results in a binary 0 
sum and a binary 1 carry (rule 3). A binary 0 on both 
inputs results in a binary 0 sum and binary 0 carry (rule 
1). 
 
 
 
 
 
 

Table 6.5. Truth Table for Half Adder 

Input 
Sum Carry 

A B 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

  
Consider the sum and carry as two separate truth table 
results generated by the inputs A and B. Note that the 
sum has generated an exclusive-OR table and the carry, 
an AND result. Figure 6.2 is the schematic of the circuit 
that produces this half adder truth table. 
 

 
(a) 

 

 
(b) 

Figure 6.1. (a) Exclusive-OR; (b) Logic Schematic Symbol 

 
The half adder has only limited use because there are 
no provisions for a carry input from a previous adder. 
 

 
Figure 6.2. Half Adder 

 
Binary Full Adder and Truth Table         
When a carry and the two quantities to be added are 
considered as inputs, the input combinations increase 
to eight as shown in table 6.6. An adder capable of 
producing the required outputs for the eight input 
combinations is called a full adder. The full adder is 
shown in the block diagram of figure 6.3. 
The full adder shown represents a single position in a 
binary-adder system. Because many such adders are 
combined in a large computer, each full adder is 
represented as a block in the computer logic diagram. 
The actual number of positions in such an adder 
depends on the size of the computer and the type of 
calculations the computer is designed for. 
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Table 6.6. Truth Table for Full Adder 

Inputs Outputs 

A B C Sum Carry 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 6.3. Full Adder 

 

Binary Decoder and Truth Table         
Decoder circuits are used to decode encoded 
information. A binary decoder, depicted in figure 6.4, 
is a logic circuit with n inputs and 2n outputs. Only one 
output is asserted at a time, and each output 
corresponds to one valuation of the inputs. The 
decoder also has an enable input, En, that is used to 
disable the outputs; if En = 0, then none of the decoder 
outputs is asserted. If En = 1, the valuation of wn 1 · · · 
w1w0 determines which of the outputs is asserted.  
An n-bit binary code in which exactly one of the bits 
is set to 1 at a time is referred to as one-hot encoded, 
meaning that the single bit that is set to 1 is deemed 
to be “hot.” The outputs of a binary decoder are one-
hot encoded. 
 

 
Figure 6.4. A n-to-2n binary decoder 

 
A 2-to-4 decoder is given in figure 6.5. The two data 
inputs are w1 and w0. They represent a two-bit number 

that causes the decoder to assert one of the outputs y0, 
. . . , y3. 
 

 
(a) 

 

 
(b) 

Figure 6.5. (a) Graphical Symbol; (b) Logic Circuit 

 
Although a decoder can be designed to have either 
active-high or active-low outputs, in figure 6.5 active-
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high outputs are assumed. Setting the inputs w1w0 to 
00, 01, 10, or 11 causes the output y0, y1, y2, or y3 to be 
set to 1, respectively. A graphical symbol for the 
decoder is given in part (a) of the figure, and a logic 
circuit is shown in part (b). 
 
 
 

Table 6.7. Truth Table for 2-to-4 decoder 

En w1 w2 y0 y1 y2 y3 
1 0 0 1 0 0 0 
1 0 1 0 1 0 0 
1 1 0 0 0 1 0 
1 1 1 0 0 0 1 
0 x x 0 0 0 0 

 

-----------------------------------------------PROCEDURE-----------------------------------------------
MATERIALS REQUIRED 
 ZYBO Zynq7000 
 Micro-USB Power USB Cable 
 Vivado™ Software 
 PC/Laptop 64bit 

 
Half Adder 
1. Create a new project, give description about the 

module’s definition, entity, and port that will be 
used 

2. Draw and design a half adder logic using VHDL. 
Set the I/O definitions and constraints: input in 
the switches sw0 and sw1 to a and b, and the 
LEDs led0 and led1 to sum and carry 

3. Elaborate and simulate the design. Verify the 
schematic with the initial design’s logic 

4. Simulate the design. Check the behavioural 
simulation pattern 

5. Synthesize, implement, and program the device. 
Record the state of the output for each input 
possibility 
 

 
Figure 6.6. Half Adder Experiment 

 
Table 6.8. Half Adder Value Table 

Inputs Outputs 
A B Sum Carry 
0 0   
0 1   
1 0   
1 1   

 
Full Adder 
1. Create a new project, give description about the 

module’s definition, entity, and port that will be 
used 

2. Draw and design a full logic using VHDL. Set the 
I/O definitions and constraints: input in the 
switches sw0, sw1, and sw2 to a, b, and c, and 
the LEDs led0 and led1 to sum and carry 

3. Elaborate and simulate the design. Verify the 
schematic with the initial design’s logic 

4. Simulate the design. Check the behavioural 
simulation pattern 

5. Synthesize, implement, and program the device. 
Record the state of the output for each input 
possibility 
 

 
Figure 6.7. Full Adder Experiment 

 

Table 6.9. Full Adder Value Table 

Inputs Outputs 
A B C Sum Carry 
0 0 0   
0 0 1   
0 1 0   
0 1 1   
1 0 0   
1 0 1   
1 1 0   
1 1 1   

 
Decoder 
1. Create a new project, give description about the 

module’s definition, entity, and port that will be 
used 

2. Draw and design an encoder logic using VHDL. 
Set the I/O definitions and constraints: input in 
the switches sw0 and sw1 to a and b, and the 
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LEDs led0, led1, led2, and led3 to z0, z1, z2, 
and z3 

3. Elaborate and simulate the design. Verify the 
schematic with the initial design’s logic 

4. Simulate the design. Check the behavioural 
simulation pattern 

5. Synthesize, implement, and program the device. 
Record the state of the output for each input 
possibility 
 

 
Figure 6.8. Decoder Experiment 

Table 6.10. Decoder Value Table 

Inputs Outputs 
A B Z0 Z1 Z2 Z3 
0 0     
0 1     
1 0     
1 1     

 

 
 
 
 
 
 
 
 
 
 
 
 

 

QUESTIONS 
1. Use algebraic manipulation to prove that x ⊕ (x ⊕ 

y) = y! 
2. Design a circuit that can add three unsigned four-

bit numbers. Use four-bit adders and any other 
gates needed! 
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MODULE 7 
BCD SEVEN SEGMENT USING VHDL 

 

OBJECTIVES 
1. To design and construct a BCD Seven Segment 

logic using VHDL 
2. To simulate, synthesize, and implement the 

design 
3. To program the completed design onto the ZYBO 

Development Board FPGA 
 

BASIC INFORMATIONS 
Code Converters 
The purpose of the decoder and encoder circuits is to 
convert from one type of input encoding to a different 
output encoding. For example, a 3-to-8 binary decoder 
converts from a binary number on the input to a one-
hot encoding at the output. An 8-to-3 binary encoder 
performs the opposite conversion.  
 

 
(a) 

 

 
(b) 

Figure 7.1. (a) Code Converter; (b) 7-segment Display 

 
There are many other possible types of code 
converters. One common example is a BCD-to-7-
segment decoder, which converts one binary-coded 
decimal (BCD) digit into information suitable for 
driving a digit-oriented display. As illustrated in figure 
7.1 (a), the circuit converts the BCD digit into seven 
signals that are used to drive the segments in the 
display. Each segment is a small light-emitting diode 
(LED), which glows when driven by an electrical 
signal. The segments are labelled from a to g in the 
figure.  
For each valuation of the inputs w3, . . . , w0, the seven 
outputs are set to display the appropriate BCD digit. 
Note that the last 6 rows of a complete 16-row truth 
table are not shown. They represent don’t-care 
conditions because they are not legal BCD codes and 
will never occur in a circuit that deals with BCD data. 
A circuit that implements the truth table can be derived 
using synthesis techniques. Finally, we should note 
that although the word decoder is traditionally used for 
this circuit, a more appropriate term is code converter. 
The term decoder is more appropriate for circuits that 
produce one-hot encoded outputs. 
 

Table 7.1. Truth Table for BCD Seven Segment 

w3 w2 w1 w0 a b c d e f g 
0 0 0 0 1 1 1 1 1 1 0 
0 0 0 1 0 1 1 0 0 0 0 
0 0 1 0 1 1 0 1 1 0 1 
0 0 1 1 1 1 1 1 0 0 1 
0 1 0 0 0 1 1 0 0 1 1 
0 1 0 1 1 0 1 1 0 1 1 
0 1 1 0 1 0 1 1 1 1 1 
0 1 1 1 1 1 1 0 0 0 0 
1 0 0 0 1 1 1 1 1 1 1 
1 0 0 1 1 1 1 1 0 1 1 

 
 

-----------------------------------------------PROCEDURE-----------------------------------------------
MATERIALS REQUIRED 
 ZYBO Zynq7000 
 Micro-USB Power USB Cable 
 Vivado™ Software 
 PC/Laptop 64bit 
 Seven Segment 
 Resistors 
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BCD Seven Segment 
1. Create a new project, give description about the 

module’s definition, entity, and port that will be 
used 

2. Draw and design a BCD Seven Segment logic 
using VHDL. Set the I/O definitions and 
constraints: input in the switches sw0, sw1, 
sw2, and sw3 to Ain, Bin, Cin, and Din, and the 
PMODs that will be used to Aout, Bout, Cout, 
Dout, Eout, Fout, and Gout 

3. Elaborate and simulate the design. Verify the 
schematic with the initial design’s logic 

4. Simulate the design. Check the behavioural 
simulation pattern 

5. Connect the PMODs to the Seven Segment 
with the resistors, depending on the Seven 
Segment that will be used (common cathode or 
common anode) 

6. Synthesize, implement, and program the device. 
Record the state of the output for each input 
possibility 

 
Table 7.2. BCD Seven Segment Value Table 

Inputs Outputs 
Ain Bin Cin Din Aout Bout Cout Dout Eout Fout Gout Value 

0 0 0 0         
0 0 0 1         
0 0 1 0         
0 0 1 1         
0 1 0 0         
0 1 0 1         
0 1 1 0         
0 1 1 1         
1 0 0 0         
1 0 0 1         

 

 
Figure 7.2. BCD Seven Segment Experiment 
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QUESTIONS 
1. Write VHDL code for a BCD-to-7-segment code 

converter, using a selected signal assignment in 
table 7.1! 

2. Derive minimal sum-of-products expressions for 
the outputs a, b, and c of the 7-segment display in 
figure 7.1! 

3. Derive minimal sum-of-products expressions for 
the outputs d, e, f, and g of the 7-segment display 
in figure 7.1! 
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MODULE 8 
SEQUENTIAL BCD COUNTER USING VHDL 

 
OBJECTIVES 
1. To design and construct a Sequential BCD 

Counter logic using VHDL 
2. To simulate, synthesize, and implement the 

design 
3. To program the completed design onto the ZYBO 

Development Board FPGA 
 

BASIC INFORMATION 
BCD Counter 
Binary-coded-decimal (BCD) counters can be 
designed using the approach reset synchronization. A 
two-digit BCD counter is presented in figure 8.1. It 
consists of two modulo-10 counters, one for each BCD 
digit. Note that in a modulo-10 counter it is necessary 
to reset the four flip-flops after the count of 9 has been 
obtained. Thus the Load input to each stage is equal to 
1 when Q3 = Q0 = 1, which causes 0s to be loaded into 
the flip-flops at the next positive edge of the clock 
signal. Whenever the count in stage 0, BCD0, reaches 
9 it is necessary to enable the second stage so that it 
will be incremented when the next clock pulse arrives. 
This is accomplished by keeping the Enable signal for 
BCD1 low at all times except when BCD0 = 9. 
 
In practice, it has to be possible to clear the contents of 
the counter by activating some control signal. Two OR 
gates are included in the circuit for this purpose. The 
control input Clear can be used to load 0s into the 
counter. Observe that in this case Clear is active when 
high.  

 

 
Figure 8.1. A two-digit BCD Counter 

 
In any digital system there is usually one or more clock 
signals used to drive all synchronous circuitry. In the 
preceding counter, as well as in all counters presented 
in the previous figures, we have assumed that the 
objective is to count the number of clock pulses. Of 
course, these counters can be used to count the number 
of pulses in any signal that may be used in place of the 
clock signal. 
 

-----------------------------------------------PROCEDURE------------------------------------------------
MATERIALS REQUIRED 

 ZYBO Zynq7000 
 Micro-USB Power USB Cable 
 Vivado™ Software 
 PC/Laptop 64bit 
 Seven Segment 
 Resistors 

 

Sequential BCD Counter 
1. Create a new project, give description about the 

module’s definition, entity, and port that will be 
used 

2. Draw and design a Sequential BCD Counter logic 
using VHDL. Set the I/O definitions and 
constraints: input in the switch sw0 to enable, 
button button0, button1, and button2, to rst, 
up, and down, and the LEDs led0, led1, led2, 
and led3 to q0, q1, q2, and q3 

3. Elaborate and simulate the design. Verify the 
schematic with the initial design’s logic 

4. Simulate the design. Check the behavioural 
simulation pattern 

5. Synthesize, implement, and program the device. 
Record the state of the output for each input 
possibility 

6. Change the output from LEDs to Seven 
Segment and reprogram the VHDL, I/O 
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definitions, and constraints accordingly. Rerun 
the procedure from step 3 to 5. 

 

 

 
Figure 8.2. Sequential BCD Counter Experiment 

 

QUESTIONS
1. A digital control circuit has three inputs: Start, 

Stop and Clock, as well as an output signal Run. 
The Start and Stop signals are of indeterminate 
duration and may span many clock cycles. When 
the Start signal goes to 1, the circuit must generate 
Run = 1. The Run signal must remain high until the 
Stop signal goes to 1, at which time it has to return 
to 0. All changes in the Run signal must be 
synchronized with the Clock signal  
a. Design the desired control circuit 
b. Write VHDL code that specifies the desired 

circuit 
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MODULE 9 
STATE MACHINE USING VHDL 

 

OBJECTIVES 
1. To learn about the concept of state machine and 

it’s design techniques 
2. To design and construct a Traffic Light Controller 

logic using VHDL 
3. To simulate, synthesize, and implement the 

design 
4. To program the completed design onto the ZYBO 

Development Board FPGA 
 

BASIC INFORMATION 
State Machine 
In this experiment we deal with a general class of 
circuits in which the outputs depend on the past 
behaviour of the circuit, as well as on the present 
values of inputs. They are called sequential circuits. In 
most cases a clock signal is used to control the 
operation of a sequential circuit; such a circuit is called 
a synchronous sequential circuit. The alternative, in 
which no clock signal is used, is called an 
asynchronous sequential circuit. Synchronous circuits 
are easier to design and are used in a vast majority of 
practical applications. 
Synchronous sequential circuits are realized using 
combinational logic and one or more flip-flops. The 
general structure of such a circuit is shown in figure 
9.1. The circuit has a set of primary inputs, W, and 
produces a set of outputs, Z. The values of the outputs 
of the flip-flops are referred to as the state, Q, of the 
circuit. Under control of the clock signal, the flip-flop 
outputs change their state as determined by the 
combinational logic that feeds the inputs of these flip-
flops. Thus the circuit moves from one state to another. 
To ensure that only one transition from one state to 
another takes place during one clock cycle, the flip-
flops have to be of the edge-triggered type. They can 
be triggered either by the positive (0 to 1 transition) or 
by the negative (1 to 0 transition) edge of the clock. 
We will use the term active clock edge to refer to the 
clock edge that causes the change in state. 
The combinational logic that provides the input signals 
to the flip-flops derives its inputs from two sources: 
the primary inputs, W, and the present (current) 
outputs of the flip-flops, Q. Thus changes in state 
depend on both the present state and the values of the 
primary inputs. 
 

 
Figure 9.1. The general form of a sequential circuit 

 
Figure 9.1 indicates that the outputs of the sequential 
circuit are generated by another combinational circuit, 
such that the outputs are a function of the present state 
of the flip-flops and of the primary inputs. Although 
the outputs always depend on the present state, they do 
not necessarily have to depend directly on the primary 
inputs. Thus the connection show in blue in the figure 
may or may not exist. To distinguish between these 
two possibilities, it is customary to say that sequential 
circuits whose outputs depend only on the state of the 
circuit are of Moore type, while those whose outputs 
depend on both the state and the primary inputs are of 
Mealy type. These names are in honour of Edward 
Moore and George Mealy, who investigated the 
behaviour of such circuits in the 1950s. 
Sequential circuits are also called finite state machines 
(FSMs), which is a more formal name that is often 
found in technical literature. The name derives from 
the fact that the functional behaviour of these circuits 
can be represented using a finite number of states. In 
this chapter we will often use the term finite state 
machine, or simply machine, when referring to 
sequential circuits. 
 

Table 9.1. Sequences of input and output signals 
Clock cycle t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

w 0 1 0 1 1 0 1 1 1 0 1 
z 0 0 0 0 0 1 0 0 1 1 0 

 
The first step in designing a finite state machine is to 
determine how many states are needed and which 
transitions are possible from one state to another. 
There is no set procedure for this task. The designer 
must think carefully about what the machine has to 
accomplish. A good way to begin is to select one 
particular state as a starting state; this is the state that 
the circuit should enter when power is first turned on 
or when a reset signal is applied. For our example let 
us assume that the starting state is called state A. As 
long as the input w is 0, the circuit need not do 
anything, and so each active clock edge should result 
in the circuit remaining in state A. When w becomes 
equal to 1, the machine should recognize this, and 
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move to a different state, which we will call state B. 
This transition takes place on the next active clock 
edge after w has become equal to 1. In state B, as in 
state A, the circuit should keep the value of output z at 
0, because it has not yet seen w = 1 for two consecutive 
clock cycles. When in state B, if w is 0 at the next 
active clock edge, the circuit should move back to state 
A. However, if w = 1 when in state B, the circuit should 
change to a third state, called C, and it should then 
generate an output z = 1. The circuit should remain in 
state C as long as w = 1 and should continue to 
maintain z = 1. When w becomes 0, the machine 
should move back to state A. Since the preceding 
description handles all possible values of input w that 
the machine can encounter in its various states, we can 
conclude that three states are needed to implement the 
desired machine. 
Now that we have determined in an informal way the 
possible transitions between states, we will describe a 
more formal procedure that can be used to design the 
corresponding sequential circuit. Behaviour of a 
sequential circuit can be described in several different 
ways. The conceptually simplest method is to use a 
pictorial representation in the form of a state diagram, 
which is a graph that depicts states of the circuit as 
nodes (circles) and transitions between states as 
directed arcs. The state diagram in figure 9.2 defines 
the behaviour that corresponds to our specification. 
States A, B, and C appear as nodes in the diagram. 
Node A represents the starting state, and it is also the 
state that the circuit will reach after an input w = 0 is 
applied. In this state the output z should be 0, which is 
indicated as A/z=0 in the node. The circuit should 
remain in state A as long as w = 0, which is indicated 
by an arc with a label w = 0 that originates and 
terminates at this node. The first occurrence of w = 1 
(following the condition w = 0) is recorded by moving 
from state A to state B. This transition is indicated on 
the graph by an arc originating at A and terminating at 
B. The label w = 1 on this arc denotes the input value 

that causes the transition. In state B the output remains 
at 0, which is indicated as B/z=0 in the node.  
 

 
Figure 9.2. State diagram of a simple sequential circuit 

 
When the circuit is in state B, it will change to state C 
if w is still equal to 1 at the next active clock edge. In 
state C the output z becomes equal to 1. If w stays at 1 
during subsequent clock cycles, the circuit will remain 
in state C maintaining z = 1. However, if w becomes 0 
when the circuit is either in state B or in state C, the 
next active clock edge will cause a transition to state A 
to take place.  
In the diagram, we indicated that the Reset input is 
used to force the circuit into state A, which is possible 
regardless of what state the circuit happens to be in. 
We could treat Reset as just another input to the circuit, 
and show a transition from each state to the starting 
state A under control of the input Reset. This would 
complicate the diagram unnecessarily. States in a finite 
state machine are implemented using flip-flops. Since 
flip-flops usually 
have reset capability, we can assume that the Reset 
input is used to clear all flip-flops to 0 by using this 
capability. We will indicate this as shown in figure 8.2 
to keep the diagrams as simple as possible 
 

-----------------------------------------------PROCEDURE------------------------------------------------
MATERIALS REQUIRED 

 ZYBO Zynq7000 
 Micro-USB Power USB Cable 
 Vivado™ Software 
 PC/Laptop 64bit 
 Resistors 
 2 Green LEDs, 2 Yellow LEDs, 3 Red LEDs, and 1 White LED 

 

 
State Machine 
1. Draw and design a state graph for the Traffic 

Light Controller, then convert the state graph to a 

State Machine Chart. State transitions will 
automatically occur after the specified delay time. 

2. Create a new project, give description about the 
module’s definition, entity, and port that will be 
used 
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3. Design the Traffic Light Controller logic using 
VHDL. Set the I/O definitions and constraints: 
input in the button button0 and button1 to rst 
and mode, and the PMODs for all of the LEDs 
that will be used (Green, Yellow, Red, and 
White) 

4. Elaborate and simulate the design. Verify the 
schematic with the initial design’s logic 

5. Simulate the design. Check the behavioural 
simulation pattern 

6. Construct the circuit using the provided LEDs, 
resistors, and a breadboard. Connect the 
circuit to the PMODs using jumpers/wires, 
according to the constraints 

7. Synthesize, implement, and program the device. 
Record the state of the output for each input 
possibility 

 
Figure 9.3. Traffic Light Diagram 

 

Table 9.2. Traffic Light Sequences 
Street A Street B Street C 

Green Red Red 
Yellow Red Red 

Red Green Red 
Red Yellow Red 
Red Red White 
Red Red Red 

 

Table 9.3. Traffic Light Sequences Timing 
Street A Street B Pedestrian 

Green - 4 sec Green - 3 sec White - 2 sec 
Yellow - 2 sec Yellow - 1 sec Red - flashes 4 

seconds at 1Hz, then 
solid 10 sec 

Red - 10 sec Red - 12 sec 

 

Notes: 
 Traffic light A should consist of 3 lights: Green (Ga), 

Yellow (Ya), and Red (Ra) 
 Traffic Light B should consist of 3 lights: Green (Gb), 

Yellow (Yb), and Red (Rb) 
 The Pedestrian Crossing should consist of 2 lights: 

White (Ww), and Red (Rw) 
 A Maintenance Mode will also be implemented. When 

Maintenance Mode is active, all three lights (R, Y, G) 
for each traffic light (A, B, P) should flash at 1Hz.  

 When Maintenance Mode is switched off, all lights 
should reset to the starting mode of (Ga, Rb, Rw) 

 

QUESTIONS
1. An FSM is defined by the state-assigned table 

in figure 9.1. Derive a circuit that realizes this 
FSM using D flip-flops! 

2. Derive a circuit that realizes the FSM defined 
by the state-assigned table in figure 9.1 using 
JK flip-flops! 

 
Table 9.4. State-assigned table for problems 1 and 2 

Present State 
y2 y1 

Next State 
Output 

z 
w = 0 w = 1 
Y2Y1 Y2Y1 

0 0 1 0 1 1 0 
0 1 0 1 0 0 0 
1 0 1 1 0 0 0 
1 1 1 0 0 1 1 

3. A sequential circuit has two inputs, w1 and w2, 
and an output, z. Its function is to compare the 
input sequences on the two inputs. If w1 = w2 
during any four consecutive clock cycles, the 
circuit produces z = 1; otherwise, z = 0. For 
example 

w1 0110111000110 
w2 1110101000111 
z 0000100001110 

Derive a suitable circuit! 
 
 
 
 

 
 




