

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 1

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa, akhirnya penyusunan Buku Penuntun Praktikum Elektronika

Digital edisi 2018 dapat diselesaikan. Buku penuntun ini merupakan, acuan yang akan digunakan oleh praktikan

yang akan melakukan Praktikum Elektronika II dan merupakan lanjutan dari Praktikum Elektronika I

sebelumnya.

Pada edisi ini, setiap modul mengalami penyempurnaan dari modul sebelumnya dan telah disesuaikan dengan

Mata Kuliah Elektronika dan perkembangan dunia elektronika. Penambahan juga dilakukan seperti pada modul

6 – 9 yang menggunakan perangkat ZYBO™ FPGA Board dengan menggunakan VHDL sebagai bahasa

pemrogramannya. Kami berharap, praktikan tidak hanya terasah kemampuannya pada sisi hardware saja namun

juga pada bagian back-end (software), serta alur pemikiran konstruktifnya.

Akhirnya, kami mengucapkan terima kasih kepada bapak Dr. rer. nat. Agus Salam selaku Ketua Departemen

Fisika yang telah banyak men-support baik moril maupun materil hingga penyusunan buku ini dapat terlaksana

dengan baik. Buku Penuntun Praktikum ini jauh dari kata sempurna, maka saran dan kritik yang membangun

selalu kami nantikan demi penyempurnaan dan perkembangan kita semua.

Buku ini kami persembahkan secara special kepada Departemen Fisika UI, semoga dapat bermanfaat. Amin.

Depok, 1 Maret 2018

Sastra Kusuma Wijaya, Ph.D

Dian Wulan Hastuti, S.Si

Affan Hifzhi, S.Si

Rizki Arif

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 2

DAFTAR ISI

Kata Pengantar ... 1

Daftar Isi .. 2

Tata Tertib ... 3

Modul 1 - Digital Integrated Circuits: AND Gate, OR Gate, Inverter, NOR Gate, NAND Gate 5

Modul 2 - Digital ICs: Binary Addition and The Full Adder; Decoder and Encoder 13

Modul 3 - Digital ICs: Flip-Flops .. 20

Modul 4 - Digital ICs: Counters .. 28

Modul 5 - The 555 Timer .. 34

Modul 6 - Half Adder, Full Adder, and Decoder using VHDL ... 41

Modul 7 - BCD Seven Segment using VHDL .. 46

Modul 8 - Sequential BCD Counter using VHDL .. 49

Modul 9 - State Machine using VHDL ... 51

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 3

TATA TERTIB PRAKTIKUM ELEKTRONIKA
LABORATORIUM ELEKTRONIKA, DEPARTEMEN FISIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS INDONESIA

1. Praktikan harus hadir maksimal 10 menit sebelum praktikum dimulai, bagi praktikan yang terlambat
tidak dapat mengikuti praktikum pada hari tersebut, dan percobaan pada hari tersebut dinyatakan gagal.

2. Pada saat berada di laboratorium, praktikum harus tenang, tertib, sopan, dan bertanggungjawab. Tas,
jaket, buku, dan perlengkapan lainnya yang tidak diperlukan untuk praktikum dititipkan di loker.

3. Praktikan dapat mengikuti praktikum apabila memenuhi syarat-syarat sebagai berikut:

a. Membawa Kartu Praktikum
b. Membawa Kotak Komponen yang telah dipinjamkan sebelumnya (Jaminan Kotak Komponen

Rp 50.000,-)
c. Membawa Laporan Praktikum berupa:

i. Laporan Pendahuluan modul hari-H
ii. Laporan Akhir modul sebelumnya, beserta lampiran data pengamatannya

d. Lulus Tes Pendahuluan (minimum 50% dari nilai total)
e. Apabila tidak memenuhi syarat (a), praktikan wajib melaporkan ke co-PJ dan dikenakan denda

Rp 15.000,-
f. Apabila tidak memenuhi syarat (b), praktikan wajib melaporkan ke co-PJ dan dikenakan denda

Rp 30.000,-
g. Apabila tidak memenuhi syarat (c) dan (d) maka praktikan tidak dapat mengikuti praktikum

pada hari tersebut dan percobaan pada hari tersebut dinyatakan gagal
4. Jika ada perlengkapan praktikum yang hilang, praktikan wajib melaporkan kepada co-PJ sebelum

praktikum dimulai
5. Bagi praktikum yang berhalangan hadir, dapat memberikan surat keterangan resmi yang akan

diserahkan kepada co-PJ atau Kepala Laboratorium
6. Praktikan harus memperoleh data melalui praktikum yang dilakukan oleh kelompoknya sendiri.

Apabila ditemukan menggunakan data dari kelompok lain, praktikan akan dianggap gagal untuk modul
tersebut

7. Praktikan yang gagal diwajibkan untuk membayar denda susulan sebesar
a. Rp 50.000,- untuk pertemuan atau modul pertama
b. Rp 75.000,- untuk pertemuan atau modul kedua

8. Ketidakhadiran dengan alasan apapun, termasuk gagal, izin, sakit, dan alpha, hanya diizinkan
maksimal dua kali. Apabila melebihi dua kali, praktikan yang bersangkutan tidak lulus
praktikum.

9. Selama praktikum, praktikan harus menjaga kebersihan, ketertiban, dan kenyamanan lingkungan
laboratorium. Praktikan juga wajib menjaga keselamatan dirinya. Selama berada di laboratorium,
praktikan dilarang mengenakan sandal dan/atau baju kaos, merokok, makan, atau mengganggu
kelompok lain.

10. Selama praktikum, praktikan dilarang meninggalkan ruangan laboratorium tanpa seizin Asisten

Laboratorium.
11. Praktikan harus mengembalikan meja praktikum kembali ke kondisi awal setelah praktikum selesai.

Sisa-sisa kabel, komponen yang terbakar, kertas, dan benda-benda lain yang sudah tidak terpakai dapat
dibuang pada tempat yang telah disediakan.

12. Setelah praktikum selesai, salinan data wajib diserahkan kepada Asisten Laboratorium pada hari itu juga
13. Praktikan harus mengganti komponen-komponen yang hilang atau rusak. Penggantian dapat

diambil dari uang jaminan, namun praktikan juga dapat menambahkan atau mengganti alat atau
komponen yang sama.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 4

14. Praktikan harus meminta tanda tangan Asisten Laboratorium pada Kartu Praktikum dan salinan
lampiran data pengamatannya.

15. Praktikan dapat diberikan peringatan atau dikelarkan apabila melanggar tata tertib ini

Sistem Penilaian Praktikum terdiri dari:

 Laporan Pendahuluan
o Sistematika Penulisan dan Bahasa
o Teori Dasar
o Tugas Pendahuluan
o Simulasi

 Penilaian Kerja
o Penggunaan Alat Ukur
o Prosedur Praktikum
o Perakitan Rangkaian
o Pengambilan Data
o Kerja Sama Tim
o Kerapihan Meja Kerja

 Laporan Akhir
o Sistematika Penulisan dan Bahasa
o Data Pengamatan
o Analisis
o Kesimpulan
o Tugas Akhir

dengan Komponen Penilaian:

 Praktikum 50%
o Tes Pendahuluan 30%
o Lap. Pendahuluan 20%
o Kerja 25%
o Lap. Akhir 25%

 Proyek Alat 25%
o Presentasi 40%
o Paper 30%
o Alat 30%

 UAS 25%

 Total 100%

Depok, 20 Februari 2018
Ketua Laboratorium Elektronika

Sastra Kusuma Wijaya, Ph.D

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 5

MODULE 1
DIGITAL INTEGRATED CIRCUITS: AND GATE, OR GATE, THE

INVERTER, THE NOR GATE, THE NAND GATE

OBJECTIVES

1. To become familiar with the characteristics and
symbols of and AND gate and an OR Gate.

2. To determine experimentally the truth table of a
combined AND gate and OR gate.

3. To determine experimentally the truth table for a
NOR gate.

4. To use NOR logic to construct a logic inverter.
5. To use NOR logic to construct a NAND gate and

determine a truth table for this gate.

BASIC INFORMATIONS

In this preceding experiments you worked with linear
ICs. In the remaining experiments you will study
digital ICs. Digital ICs are logic circuits, the building
blocks of digital computers and calculators. The basic
digital circuits are rather simple and will serve as an
introduction to digital ICs.

Logic Circuits

In digital electronics, a gate is a logic circuit with one
output and one or more inputs; an output signal occurs
for certain combinations of input signals. In this
experiment we examine the AND and OR Gate.

Logic circuits can be in one of two states such as on or
off, high or low, magnetized or unmagnetized, and so
on. A toggle switch is a simple example of a two-state
device.

AND Gate

Figure 1.1 shows a diode circuit with a switch input
and a load resistor of 100 kΩ. The supply voltage is +5
V. when the switch is in the ground position, the diode
is forward-biased and approximately 0.7 V appears
across the diode. Therefore, the output voltage is low
when the input is low.

Figure 1.1. A forward-biased diode acts like a closed switch.

On the other hand, when the switch is at +5 V, the net
voltage across the diode-resistor combination is 0. As
a result, the diode is non-conducting. Since there is no
current though the load resistor, the output is pulled up
to the supply voltage. In other words, the output is
HIGH (+5 V) when the input is HIGH.

Now look at the two-input AND gate of figure 1.2(a).
When both switches are in the ground position, both
diodes are conducting and the output is low. If S1 is
switched to +5V and S2 is left in the ground position,
then the output is still low because D2 still conducts.
Conversely, if S1 is in the ground position and S2 is at
+5V, diode D1 is conducting and the output is still low.

The only way to get a high output with and AND gate
is to have all input high. If S1 and S2 are both at +5V,
both diodes are non-conducting. In this case, the
output is pulled up to the supply voltage because there
is no current through the load resistor. By adding more
diodes and switches, we can get 3-input AND gates, 4-
input AND gates, and so on. Regardless of how many
inputs and AND gate has, the operation is the same
because it is an all-or-nothing gate. That is, all inputs
must be high to get a high output. If any input is low,
the output is low.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 6

Figure 1.2. AND gate. (a) Diode circuit; (b) 2-input; (c) 3-

input; (d) 4-input.

Transistors, MOSFETs, and other devices can also be
used in the construction of AND gates. Figure 1.2(b)
shows the schematic symbol for a 2-input AND gate of
any design. Figure 1.2(c) shows the symbol for a 3-
input AND gate, while figure 1.2(d) is the 4-input AND

gate. For these AND gates the action can be
summarized like this: All inputs must be high to get a
high output.

Truth Table for Two-Input AND Gate

The action of logic circuit is usually summarized in the
form of truth tables. These are tables that show the
output for all combinations of the input signals. Table
1.1 shows the truth table for a 2-input AND gate.

Binary means ‘two’. Computers use the binary number
system. Rather than having digits 0 to 9, a binary
number system has only digits 0 and 1. This is better
suited to digital electronics where the signals are low
or high, switches are open or closed, lights are off or
on, and so on. In our experiments, we will use positive
logic; this means binary 0 represents the low state and
binary 1 represents the high state. With this in mind,
table 1.2 is the truth table of a 2-input AND gate as it is
usually shown. This gives the same information as

table 1.1, expect it uses a binary code where 0 is low
and 1 is high.

Table 1.1. Two-input AND Gate

Inputs
Output

A B
Low Low Low
Low High Low
High Low Low
High High High

Table 1.2. Two-input AND Gate

Inputs
Output

A B
0 0 0
0 1 0
1 0 0
1 1 1

OR Gate and Truth Table

Figure 1.3(a) shows 2-input OR gate. When both
switches are in the ground position, the diodes are non-
conducting, and the output is low. If either switch is
set to +5V, then its diode conducts and the output is
approximately +4.3V. In fact, both switches can be at
+5V and the output will be around +4.3V (the diodes
are in parallel).

Therefore, if either input is high or if both are high, the
output is high. Table 1.3 summarizes the operation of
a 2-input OR gate in terms of binary 0s and 1s. As you
see, if both inputs are low, the output is low. If either
input is high, the output is high. If both inputs are high,
the output is high.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 7

Figure 1.3. OR Gate. (a) Diode circuit; (b) 2-input; (c) 3-input;

(d) 4-input

Unlike the AND gate where all inputs must be high to
get a high output, the OR gate has a high output if any
input is high. Figure 1.3(b) shows the symbol for a
two-input OR gate. By adding more diodes to the gate,
we can produce 3-input OR gates, 4-input OR gates,
and so on. Figures 1.3(c) and (d) show the schematic
symbols for 3- and 4-input OR gates of any design.

Table 1.3. Two-input OR gate

Inputs
Output

A B
0 0 0
0 1 1
1 0 1
1 1 1

Combined AND-OR Gates

Combinations of AND and OR gates may be used to
perform complex logic operation in computers. Figure
1.4 is an example of combining AND and OR gates.
Figure 1.4 is an example of combining AND and OR

gates. To analyze this circuit, consider what happens
for all possible inputs starting with all low, one low,
and so on. For instance, if all inputs are low, the AND

gate has a low output; therefore, both inputs to the OR

gate are low and the final output is low. This is the first
entry sown in table 1.4.

Next, consider A low, B low, and C high. The OR gate
has a high input; therefore, its final output is high. This
is the second entry in table 1.4. By analyzing the
remaining input combinations, you can get the other
entries shown in the truth table. (you should analyze
the remaining entries.)

IC Gates

Nowadays, most logic circuits are available as ICs.
Transistor-transistor Logic (TTL) became
commercially available in 1964. Since then, it has
become the most popular family of digital ICs. In this
experiment you will work with TTL gates.

An IC 7408, one of the many available ICs in the TTL
family. As you see, this dual in-line package contains
4 AND gates. For this reason, it is called quad two-input
AND gate. Notice that pin14 is the supply pin. For TTL
devices to work properly, the supply voltage must be
between +4.75 and +5.25 V. This is why +5V is the

nominal supply voltage specified for all TTL devices.
Notice also pin 7, the common ground for the chip.
The other pins are for inputs and outputs.

Figure 1.4. AND-OR Circuit

The four AND gates are independent of each other. In
other words, they can be connected to each other or to
other TTL devices such as the quad two-input OR gate
(IC 7432). Again, notice pin 14 connects to the supply
voltage and pin 7 to ground.

Table 1.4. AND-OR Circuit

Inputs
Output

A B C
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Boolean Equations

Boolean algebra is a special algebra used with logic
circuits. In Boolean algebra, the variables can have
only one of two values: 0 or 1. Another thing that is
different about Boolean algebra is the meaning of the
plus and times signs. In Boolean algebra, the ‘+’ sign
stands for the OR operation. For instance, if the inputs
to an OR gate are A and B, the output Y is given by

BAY 

Read this equation as Y equals A OR B. Similarly, the
* sign is used for the AND operation. Therefore, the
output of a 2-input AND gate is written as

BAY *

or simply as

Y = AB

Read this as Y equals A AND B.

These expressions can be combined to describe any
logic circuit. For instance, the AND gate in figure 1.4
can be expressed in Boolean algebra as AB. This
output supplies one input to the OR gate whose output
(and the final output of the circuit) is

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 8

CABY 

NOT Logic

A NOT circuit is simply an inverter, as in figure 1.5(a)
-an amplifier, biased to cut off- whose output is 180o
out of phase with its input. When 0 V (a logic low) or
no input is applied, the transistor is cut off and the
output is at VCC; that is, it is high. When +5 V (+VCC
or a logic high) is applied to the base, the transistor
saturates driving the collector voltage to 0.1 V, a logic
low. The schematic symbol for a NOT or INVERTER

circuit is shown in figure 1.5(b).

The Boolean expression for the characteristics of an
inverter is given by

AY 

The bar over the A represents NOT. Thus, if the letter

A represents a high level (1). A Represents low, and if

A = 0, 1A .

The 7404 IC is a TTL gate with six inverters. As with
the 7408 and 7432, pin 14 is the supply and pin 7 is the
ground.

(a)

(b)

Figure 1.5. (a) NOT or Inverter Circuit; (b) Logic Symbol

NOR and NAND Gate

The three building-block circuits, AND, OR, and NOT,
serve as the basis for other logic circuits. The NOR gate
combines NOT and OR logic. What characterizes a NOR

circuit is that a low input is produced when a high

signal is applied to input A, nor to input B, nor to input
N, nor to any combination of inputs. A high output is
produced when all the inputs are low. Thus the output
states for the NOT-OR or NOR are the inverse of the OR

gate.

Figure 1.6 is a schematic symbol for a NOR gate with
two inputs. The truth table of a 2-input NOR gate is
shown in table 2.1, and the Boolean expression for a
NOR gate is given by

BAY 

A circuit which combines the NOT and AND functions
is called a NAND gate. A 2-input NAND gate is show in
figure 1.7, and its truth table is shown in table 1.6. The
output is like that which would be produced by a NOT

AND Circuit; hence the term ‘NAND’. The NAND gate
is therefore an AND gate with its output inverted. The
Boolean expression for NAND gate is

CBA 

TTL Logic Chips

Present state of the art employs integrated-circuit (IC)
TTL logic in the manufacture of NOT, NOR, and NAND

gates. ICs are nicknamed ‘chips’ because the actual
electronics are manufactured on small-size substrates
that appear as chips from a larger block of material. In
this experiment you will use the 7427, a TTL positive-
logic IC. This device is a triple 3-input NOR gate.

Figure 1.8 is a top view of the 7427 showing the inputs
and outputs of each of the three gates. Also shown are
the connection for +VCC, terminal 14, and the
connection for the ground in terminal 7. The 7427
operates with a supply +5V.

De Morgan’s Theorem

It is desirable to connect gates together in as few a
number as possible to create a desired output result
given a fixed set of input conditions. Alternatively, it
may be necessary to utilize one type of gate to produce
several other logic functions. Purchasing one IC type
in bulk quantity has the advantage of reducing the cost
of these chips.

Figure 1.6. Two-input NOR-gate Logic Symbol

Two theories are used to facilitate the objectives. The
firs, Boolean Algebra, utilizes rules based on logic
gate operations. The later, De Morgan’s Theorem, is
examined here.

RA

R1

RL

+5V

INPUT

Vout

INPUT OUTPUT
(A) (Y)

OUTPUTINPUT

A

B
Y

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 9

Table 1.5. Two Input NOR-Gate

A B C
0 0 1
0 1 0
1 0 0
1 1 0

CBA 

De Morgan states, simply, that the inverse of Boolean
relationship is expressed as a new relationship that is
the opposite in value and function of the original. That

is, the state of the input is inverted (A to A) and the
function is inverted (OR to AND and AND to OR). To
apply this concept, consider the Boolean expression
for a NOR gate.

To ‘demorganize’ that expression, first invert each
input and the function, so that the Boolean expression
becomes

BAY 

De Morgan’s theorem states that these two expressions
are identical; that

BABA 

The truth tables for these two produce results the same
as those of table 1.5. Take one set of inputs, say, A =
0 and B = 0, and apply them to both expressions. The
original NOR expression says A + B inverted. 0 + 0
results in a zero. Inverting this produces a final result
of 1.

Figure 1.7. Two-input NAND-gate Logic Symbol

Now the demorganized expression, an inverted is AND

with B inverted. In this example, a 0 inverted is a 1,
and 1 AND 1 produces a result of 1. Note that both
expressions produced the same result for the same
input condition.

Table 1.6. Two-input AND-Gate

A B C
0 0 1
0 1 1
1 0 1
1 1 0

CBA 

SUMMARY

1. Digital electronics deals with voltages that are in
one of two states, either high or low.

2. Digital circuits are called logic circuits because
certain combinations of inputs determine the
output.

3. In positive logic, a binary 0 represents low voltage
and a binary 1 is high voltage.

4. The simplest logic circuits are 2-input OR gates
and 2-input AND gates

5. All inputs must be high to get a high output an
AND gate

6. An OR gate has a high output if any input is high.
7. A truth table is a concise summary of all input

output combinations.
8. TTL is the most popular family of digital ICs.
9. A NOT circuit is a logic inverter, converting a

binary 1 into a 0 or a 0 into a 1
10. A NOR gate is an OR circuit whose output is

inverted. It is a NOT OR gate

11. A NAND gate is an AND circuit whose output is
inverted.

12. The truth table of NAND gate is that of an AND

gate, with the output inverted.

POSITIVE LOGIC: YCBA 

Figure 1.8. Top View and Block Diagram of a 7427

SELF-TEST

1. Are digital circuits the same as linear circuits?
2. In a 3-input AND gate all inputs must be ______ to

get a ______ output.
3. In a 4-input OR gate at least ______ input must be

high to get a ______ output.

4. With positive logic, a binary 0 represents the
______ state and a binary 1 the ______ state.

5. ______ is the most popular family of digital ICs,
two examples being the 7408 and the 7432. The

OUTPUTINPUT

A

B
Y

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 10

first is a ______ 2-input AND gate and the second
is a quad two-input OR gate.

6. The nominal supply voltage for TTL is _____.
7. If each of the inputs of a three-input NAND gate is

high, the output is _______.
8. The expression 1 + 0 represents a _______ gate,

one of whose inputs is _______, the other

9. A binary 1 is changed into a binary 0 by a circuit
called a(n) ________ or _________ circuit.

10. A circuit whose logic is the inverse of AND logic
is called a(n)_______ gate

11. A circuit whose logic is the inverse of OR logic is
called a(n)_______ gate.

12. What is the De Morgan alternate expression for a
NAND gate?

---PROCEDURE---

MATERIALS REQUIRED

 Power Supply DC
 Digital Multimeter
 ICs: 7408, 7432, 7427, 7404, 7400
 Resistors and switches
 Logic Breadboard; Three SPDT Switches

AND Gate

1. Connect the circuit of figure 1.9 (remember to
connect pin 14 to + 5V and pin 7 to ground)

2. Set the switches as needed to get the different
input combinations shown in table in figure 1.9.
Record the state of the output as a 0 or 1 for each
input possibility

Inputs

Y
A B
0 0
0 1
1 0
1 1

Figure 1.9. AND Gate Experiment

OR Gate

1. Connect the circuit of figure 1.10.
2. Measure the output voltage for each input

combination of table shown in figure 1.10. Record

Inputs

Y
A B
0 0
0 1
1 0
1 1

Figure 1.10. OR Gate Experiment

Combined AND-OR Gate

1. Connect the circuit of figure 1.11.
2. Set the switches for each input shown in figure

1.11. Record the output states as 0s and 1s.
3. Design a 3-input circuit with any combination of

gates to get a high output only when all inputs are
high. Draw the circuit!

4. Verify the circuit experimentally. Record your
results in a truth table. What is the Boolean
expression of this circuit?

5. Design a 4-input OR gate using any combination
of gates. Draw the circuit.

+5V

7408

A

B

Y

S1

S2

1

2

3

+5V

S1

S2

A

B

Y

1

2

7432
3

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 11

6. Verify the circuit experimentally and record the
results in a truth table. What is the Boolean
expression of this circuit?

Inputs

Y
A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 1.11. Combined AND-OR Experiment

NOR Gate Logic

1. Connect the circuit shown in figure 1.12 and
complete the truth table. Take the picture of each
steps.

2. Connect the circuit shown in figure 1.13 and
complete the truth table. Take the picture of each
steps.

3. Connect the circuit shown in figure 1.14 and
complete the truth table. What is the Boolean
expression for the circuit?

NAND Gate Logic

1. Connect the circuit shown in figure 1.12 and
complete the truth table (replace the 7427 with
7410). Take the picture of each steps.

2. Connect the circuit shown in figure 1.13 and
complete the truth table (replace the 7427 with
7410). Take the picture of each steps.

3. Connect the circuit shown in figure 1.14 and
complete the truth table (replace the 7427 with
7410). What is the Boolean expression for the
circuit?

A B C OUTPUT
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 1.12. Experimental Circuit 4 and Truth Table 4

+5V

A

B

Y7432

S1

S2

1

2

3

S3

1

2

3

C

7408

A

B

C

3

5
4 6 2

1
3

12

Dian Astuti
Typewriter
1

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 12

A B C
0 0
0 1
1 0
1 1

Figure 1.13. Experimental Circuit 5 and Truth Table 5

A B C
0 0
0 1
1 0
1 1

Figure 1.14. Experimental Circuit 6 and Truth Table 6

QUESTIONS

1. Using the logic family type in the experiment,
identify the voltage level for the two logic states
of a gate’s output.

2. For your logic family, can unused inputs remain
floating (open)? Explain your answer using the
logic family characteristics as supporting
information.

3. How many gates can the output of a single gate in
your logic family drive? Contrast this to other
logic families (TTL, CMOS, etc.)

4. What are the characteristics of a NOR gate?
5. What are the characteristics of a NAND gate?

21

43

1
2 12
13

A

B

C

21

43

1
2 12
13

65

A

B

C

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 13

MODULE 2

DIGITAL ICS: BINARY ADDITION AND THE FULL ADDER;

DECODER AND ENCODER

OBJECTIVES

1. To learn the rules of binary addition.
2. To convert a decimal into a binary number, and a

binary into a decimal number.
3. To explore the uniqueness of an exclusive-OR

gate.
4. To construct a full adder using IC logic blocks.
5. Study of 8 to 3 lines encoder.
6. Study of 3 to 8 lines decoder.

BASIC INFORMATIONS

Binary Number

The binary system of arithmetic uses only two symbols
(0 and 1) to represent all quantities. This system finds
wide use in computers because the 0 and 1 are easily
represented by the 2-state digital circuits.

Counting is started in the binary system in the same
way as in the decimal system with 0 for zero and 1 for
one. But at 2 in the binary system there are no more
symbols. Therefore, the same move must be taken at
two in the binary system that is taken at 10 in the
decimal system: It is necessary to place a 1 in the
position to the left and start again with a 0 in the
original position. Table 2.1 is a list of numbers shown
in both decimal and binary form.

The order of binary number is not designated unit,
tens, hundreds, thousands, and so forth, as in the
decimal system. Instead, the order is 1, 2, 4, 8, 16, 32,
and so on, reading from right to left with the position
farthest to the right being 1. Table 2.2 shows more
decimal quantities and their equivalents in binary
form. Note how the positions are numbered right to
left.

Table 2.1. Decimal and Binary Numbers

Decimal Binary Decimal Binary
0 0 6 110
1 1 7 111
2 10 8 1000
3 11 9 1001

4 100 10 1010
5 101 11 1011

These values are found by raising the base radix (2) by
an exponential value equivalent to its position in the
number. The smallest binary digit called the least
significant bit (LSB) is binary digit position 0. It has a
numerical weight of 20 = 1. The weight of the next
digit is 21 = 2, then 22 = 4, and so forth. Notice that
each position weight is twice that of the preceding
digit.

Converting binary values to decimal is achieved by
multiplying the position weight of each digit by the
value (1 or 0) in the position. These products are added
to produce the final decimal equivalent of the original
binary number. For example, let us convert 110101 to
its decimal value. There are six binary digits with the
LSB in rightmost place. The weights of these digits
(bits) are LSB = 1 and then 2, 4, 8, and 16 and finally,
32. Thus, 1101012 = 5310. The subscript denotes the
base value of the number system used for each number
(2 for binary and 10 for decimal).

Table 2.2. Decimal Numbers and Their Binary Equivalents

Binary
Decimal 256 128 64 32 16 8 4 2 1

34 1 0 0 0 1 0
15 1 1 1 1
225 1 1 1 0 0 0 0 1
75 1 0 0 1 0 1 1

The method used to convert a decimal number to its
binary equivalent may be called divide and remainder.
Divide the original decimal value by 2, the binary bas
value. The result is a quotient and a remainder. The
remainder becomes the binary number starting with
the LSB. Divide the quotient again by 2. The
remainder is the next binary bit. The quotient result is
again divided by the base value with the remainder
becoming the third binary digit. This is repeated until
the quotient becomes 0.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 14

Addition of binary quantities is very simple and is
based on the following three rules:

1. 0 + 0 = 0
2. 0 + 1 = 1
3. 1 + 1 = 0 with a 1 carry to the left

Table 2.3 is an example of binary addition using the
rules stated.

The factors to be added are 75 and 225. Starting at the
right, we have 1 + 1 = 0 with a 1 carry (rule 3).

The next position to the left is added: 0 + 1 = 1. 0 with
1 carried to the third position. The third position
consists of 0 + 0 = 0 + 1(carry) = 1. This procedure
given in binary form as 100101100, which is equal to
256 + 32 + 8 + 4 = 300. This sum is exactly what we
would expect to get by adding the decimal quantities
225 and 75.

Binary quantities can also be subtracted, multiplied,
and divided, using rules similar to those for addition.

Table 2.3. Adding Binary Numbers

Binary Value
Carry: 1 1 1 1
225 = 0 1 1 1 0 0 0 0 1
+75 = +0 0 1 0 0 1 0 1 1
300 = 1 0 0 1 0 1 1 0 0

Exclusive-OR Gate

Figure 2.1(a) is a schematic diagram for a special
circuit called an exclusive-OR. The Boolean expression

for this circuit is .BABAY  Table 2.4 is the truth
table for this circuit. Output Y will be high if A is low
and B is high or the reverse is true. Output Y is low
whenever the two inputs are both low or both high.

Examine table 2.4 carefully and note that the output is
in one state when the inputs agree and in another state
when they disagree. This respect allows the exclusive
OR to be used for comparing binary bit values.

Table 2.4. Exclusive-OR

A B Y

0 0 0
0 1 1
1 0 1
1 1 0

The Boolean operator for an exclusive-OR is an OR

operator (+) enclosed in a circle: . As such, another
Boolean expression for the circuit in figure 2.1 is

BAY 

You will find many uses for this circuit which
packaged in its own IC (7486). The schematic symbol
for this gate is shown in figure 2.1(b).

Binary Half Adder and Truth Table

The simplest binary adder is called a half adder and is
capable of combining two binary numbers and
providing an output and a carry when necessary. The
first step in understanding the operation of a half adder
is to investigate the input combinations and the
resulting outputs based on the rules of binary addition.
Table 2.5 is a truth table showing these combinations.
The table shows that a binary 1 on one input with a 0
in the other (rule 2) results in a binary 1 sum and binary
0 carry. A binary 1 on both inputs results in a binary 0
sum and a binary 1 carry (rule 3). A binary 0 on both
inputs results in a binary 0 sum and binary 0 carry (rule
1).

Table 2.5. Truth Table for Half Adder

Input
Sum Carry

A B
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Consider the sum and carry as two separate truth table
results generated by the inputs A and B. Note that the
sum has generated an exclusive-OR table and the carry,
an AND result. Figure 2.2 is the schematic of the circuit
that produces this half adder truth table.

(a)

(b)

Figure 2.1. (a) Exclusive-OR; (b) logic schematic symbol

The half adder has only limited use because there are
no provisions for a carry input from a previous adder.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 15

Figure 2.2. Half Adder

Binary Full Adder and Truth Table

When a carry and the two quantities to be added are
considered as inputs, the input combinations increase
to eight as shown in table 2.6. An adder capable of
producing the required outputs for the eight input
combinations is called a full adder. The full adder is
shown in the block diagram of figure 2.3.

The full adder shown represents a single position in a
binary-adder system. Because many such adders are
combined in a large computer, each full adder is

represented as a block in the computer logic diagram.
An example of a five-position binary adder is shown
in figure 2.4. The actual number of positions in such
an adder depends on the size of the computer and the
type of calculations the computer is designed for.

Table 2.6. Truth Table for Full Adder

Inputs Outputs

A B C Sum Carry

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.3. Full Adder

SUMMARY

1. The binary number system for digital computers
uses only two symbols, 1 and 0. These have the
same meaning as 1 and 0 in the decimal number
system you are so familiar.

2. In the decimal or base-10 system the value of each
digit in a number is some power of 10 and depends
on its position in the number. For example, in the
number 527, the 7 is in the units (100) column and
counts for 1 x 7, or 7; the 2 is in the tens (101)
column and counts for 2 x 10, or 20. The 5 is in

the hundreds (102) column and counts for 5 x 102
or 500.

3. Numbers in the binary system are formed exactly
as they are in the decimal, except the value of a
column is a power of 2 rather than of 10, with the
extreme right-hand column having the value 20 or
1. The next column on the left has the value 21 or
2; the next 22 or 4; the next 23 or 8; and so on. The
values of the first seven binary columns, reading
form right to left are:

4. To convert binary numbers to decimal, use the
added weight process. To convert in the reverse
direction, use the divide-and-remainder method.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 16

Figure 2.4. Block Diagram of Five-Position Binary Adder

5. Addition of binary numbers is based on the

following rules:
a. 0 + 0 = 0
b. 1 + 0 = 1
c. 1 + 1 = 0 with 1 carry to the left

6. An exclusive-OR gate is a unique circuit that
produces a 0 when the two inputs are the same and
a one when they are opposite of each other.

7. A half-adder is a binary adder (figure 2.2) which
combines two binary digits and provides an output
and a carry. A half adder has four possible input
combinations (table 2.5).

8. A full-adder (figure 2.3) is a binary adder which
combines three binary digits and provides an
output and a carry. One of the inputs may be a
carry from a previous arithmetic operation. A full-
adder has eight possible input combinations (table
2.6).

SELF-TEST

1. A number written in binary form has one and only
one equivalent decimal value. ________
(true/false)

2. The number 479 written in binary form is
_______.

3. The result of adding these two binary numbers,
10011100 and 10001101 is________.

4. The value of the number 11010011 in the decimal
form is________.

5. Give an example of application of decoder and
encoder circuit!

---PROCEDURE---

MATERIALS REQUIRED

 Power Supply: Variable regulated low-voltage

 Digital multimeter

 Resistors

 Integrated circuits 7408, 7432, 7486, 7411, 4072

 3 SPDT Toggle Switches, LED

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 17

Half Adder Circuit

1. Connect the half-adder circuit (figure 2.5)
2. Connect pin 14 of each ICs to +5 V of the supply

and pin 7 to the ground.
3. Change the input as shown in table 2.7 and write

down the condition of the output.

Table 2.7. Logic of Half Adder

Inputs Outputs

A B Sum Carry

Low Low
Low High
High Low
High High

Figure 2.5. Experimental Half Adder

Full Adder Circuit

1. Connect the full-adder circuit (figure 2.6).
2. Connect pin 14 of each ICs to +5 V of the supply

and pin 7 to the ground.
3. Change the input as shown in table and write

down the condition of the output.
4. Using techniques developed for the full adder,

create a truth table for a full subtractor. What is
the Boolean expression for the difference and
borrow results?

Table 2.8. Logic of Full Adder

Inputs Outputs

A B C Sum Carry

Low Low Low
Low Low High
Low High Low
Low High High
High Low Low
High Low High
High High Low
High High High

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 18

Figure 2.6. Experimental Full Adder

8 to 3 Lines Encoder Circuit

Figure 2.7. Experimental Circuit of 8 to 3 Lines Encoder

1. Make connections as shown in figure 2.7!
2. Connect pin 14 of each ICs to +5 V of the supply

and pin 7 to the ground!
3. Connect input 1 or 0 to encoder circuit as shown

in figure 2.7 as per truth table!
4. Switch on the instrument!
5. Observe output on 8 bits LED display!
6. Repeat step number 3 to 5 for other input

combinations!
7. Verify the truth table!

Table 1.9. Truth Table for 8 to 3 Lines Encoder

D0 D1 D2 D3 D4 D5 D6 D7 x y z

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 19

3 to 8 Lines Decoder Circuit

Figure 2.8. Experimental 3 to 8 Lines Decoder

1. Make connections as shown in figure 2.8!
2. Connect pin 14 of each ICs to +5 V of the supply

and pin 7 to the ground!
3. Connect input 1 or 0 to decoder circuit as shown

in figure 2.8 as per truth table!
4. Switch on the instrument!
5. Observe output on 8 bits LED display!
6. Repeat step number 3 to 5 for other input

combinations!
7. Verify the truth table!

Table 1.10. Truth Table of 3 to 8 Lines Decoder

x y z D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

QUESTIONS

1. Why is the binary number system preferred to the
decimal system for use in computers?

2. What is the main difference of half-adder and full-
adder?

3. Write the quantity 8999 in binary form!
4. Convert the binary quantity 10011111 to its

decimal equivalent!
5. Explain 3 example of application of decoder and

encoder circuit!

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 20

MODULE 3

DIGITAL ICs: FLIP-FLOPS

OBJECTIVES

1. To construct an RS flip-flop using NOR gates.
2. To observe the action of a D flip-flop.
3. To observe the action of a T flip-flop.
4. To observe the action of a JK flip-flop.

BASIC INFORMATION

RS Flip-Flop

Figure 3.1 shows the schematic symbol for a set-reset
latch or RS flip-flop. A high voltage (+VCC) applied to
the set S input with a low (0 V) to the reset R input

forces the output Q to VCC (high) and Q low (0 V). A

high S input therefore sets the output to 15 V, where it
remains even though the inputs are removed.

A high reset R and low set S causes the outputs to

switch or flip-flop to a high Q and a low Q. This is

referred to as the reset condition of the flip-flop. The
circuit remains latched in its current condition until the
reverse input conditions are applied. The circuit
latches in either of two states. A high S inputs sets Q
to high; a high R input resets Q to low. Output Q
remains in a given state until triggered into the
opposite state.

Figure 3.1. Symbol for RS Flip-flop

Table 3.1 summarizes the operation. When both
control input are low, no change can occur in the
output and the circuit remains latched in its last state.
This condition is called the inactive state because
nothing changes.

When R is low and S is high, the circuit sets the Q
output to a high. On the other hand, if R is high and S

is low, the Q output resets to low. The Q output is the

inverse of the Q output.

Look at the final entry of table 3.1. R and S are high
simultaneously. This is called an invalid condition; it
is never used because it leads to paradoxical operation.
It means you are trying to set and reset the flip-flop at
the same time, which is a contradiction. From now on,
an asterisk in a truth table indicates an invalid
condition.

Table 3.1. RS Latch

R S Q Comment
0 0 NC No Change
0 1 1 Set
1 0 0 Reset
1 1 * Invalid

NOR Latches

Figure 3.2(a) is a NOR latch, or RS flip-flop. As shown
in table 3.1, a low R and a low S produce the inactive
state; in this state, the circuit stores or remembers. A
low R and a high S represent the set state, while a high
R and a low S give the reset state. Finally, a high R and
a high S produce an invalid condition, where the output
is uncertain; therefore, we must avoid R = 1 and S = 1
when using NOR latch.

(a)

(b)

Figure 3.2. NOR-Latch Timing Diagram

NAND Latches

Figure 3.3 shows an RS latch built with cross-coupled
NAND gates. Because of the NAND-gate inversion, the

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 21

inactive and invalid conditions are reversed as shown
in table 3.2. Therefore, whenever you use a NAND

latch, you must avoid having both inputs low at the
same time.

Figure 3.3. NAND Latch

Table 3.2. NAND Latch

R S Q Comment
0 0 * Invalid
0 1 1 Set
1 0 0 Reset
1 1 NC No Change

Clocking

Computers use thousands of flip-flops. To coordinate
the overall action, a square-wave signal called the
clock is sent to each flip-flop. This signal prevents the
flip-flops from changing states until the right time.

Figure 3.4(a) shows a clocked RS flip-flop. The idea
is simple. When the clock is low, the AND gates are
disabled, and the S and R signals cannot reach the flip-
flop. But when the clock goes high, the S and R signals
can drive the flip-flop, which then sets, resets, or does

nothing depending on the values of S and R. The point
is the clock controls the timing of the flip-flop action.

Figure 3.4(b) shows the timing diagram. Q goes high
when S is high and CLK goes high. Q returns to the
low state when R is high and CLK goes high. Using a
common clock signal to drive many flip-flops allows
us to synchronize the operation of the different
sections of a computer.

(a)

(b)

Figure 3.4. (a) Clocked RS Flip-Flop; (b) Timing Diagram

Table 3.3 summarizes the operation of the clocked RS
flip-flop. When the clock is low, the output is latched
in its last state. When the clock is high, the circuit will
set if S is high or reset if R is high. CLK, R, and S all
high simultaneously is an invalid condition, which is
never used deliberately.

Table 3.3. Clocked NAND Latch

R S CLK Q
0 0 0 NC
0 1 0 NC
1 0 0 NC
1 1 0 NC
0 0 1 NC
0 1 1 1
1 0 1 0
1 1 1 *

D Latches

A data or D flip-flop is specifically designed to store
the data state inputted to it and to hold that information
until the data is changed and the flip-flop is clocked.

Figure 3.5 shows one way to build a D latch. Because
of the inverter, data bit D drives the S input and the

complement D drives the R input. Therefore, a high D
sets the latch, and a low D resets it. Table 3.4
summarizes the operation of the D latch. Especially
important, there is no invalid condition in this truth
table. The inverter guarantees that S and R are always
in opposite sites; therefore, it is impossible to set up an
invalid condition.

Figure 3.5. D Latch

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 22

Table 3.4. Unclocked D Latch
D Q
0 0
1 1

Usually, a D flip-flop is clocked as shown in figure
3.6. When CLK is low, the AND gates are disabled and
the RS latch remains inactive. When CLK is high, D

and D can pass through the AND gates and set or reset
latch. Table 3.5 summarizes the operation. X
represents a “don’t care” condition; it stands for either
0 or 1. While CLK is low, the output cannot change,
no matter what D is. When CLK is high, however, the
output equals the input.

Figure 3.6. Clocked D Latch

Table 3.5. Clocked D Latch

CLK D Q
0 X NC
1 0 0
1 1 1

Edge-triggered D Flip-Flops

In figure 3.7(a), the time constant of the input RC
circuit is designed to be much smaller than the clock
pulse width. Because of this, the capacitor can charge
fully when CLK goes high; this exponential charging
produces a narrow positive voltage spike across the
resistor. Later, the trailing edge of the clock pulse
results in a narrow negative spike.

The narrow positive spike enables the AND gates for
an instant; the narrow negative spike does nothing.
The effect is to activate the input gates during the
positive spike, equivalent to sampling the value of D
complement hit the latch inputs, forcing Q to set or
reset.

This kind of operation is called edge triggering
because the flip-flop responds only when the clock is
changing states. The triggering of figure 3.7(a) occurs
on the positive-going edge of the clock; this is why it
is referred to as positive-edge triggering.

Figure 3.7(b) is the timing diagram. The crucial idea is
this: The output can change only on the rising edge of
the clock. Put another way, data is stored only on the
positive-going edge. The truth table for the edge-
triggered D flip-flop except that the information under
CLK is changed from 0 to STEADY STATE and 1 to
,indicating a positive going transition.

(a) (b)

Figure 3.7. (a) Edge-triggered Flip-flip; (b) Timing Diagram

PRESET and CLEAR

When power is first applied, flip-flops come up in
random states. To get some computers started, an
operator has to push a master reset button. This is a
CLEAR (reset) signal to all flip-fops. Also, it is
necessary in some computers to PRESET (synonymous
with set) certain flip-flops before a computer run.

Figure 3.8 shows how to include both functions in a D
flip-flop. The edge triggering is the same as previously
described. In addition, the OR gates allow us to slip in
a high PRESET sets the latch: a high CLEAR resets it.

PRESET is sometimes called direct set, and RESET is
sometimes called direct reset. The word ‘direct’ means
unlocked. For instance, a clear signal may come from
a push button, the output will rest when the operator
pushes the CLEAR button.

Logic Symbol

Figure 3.9(a) is the logic symbol of a positive-edge
triggered D flip-flop. The CLK input has a small
triangle, a reminder of the edge triggering. When you
see this symbol, remember what is means: The D input
is sampled and stored on the rising edge of the clock.
Also included are the PRESET and CLEAR. This means

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 23

a low PRESET will set the flip-flop; a low CLEAR will
reset it. As a reminder of the phase reversal, inversion
bubbles are shown on the PRESET and CLEAR inputs.

Figure 3.8. Edge-triggered D Flip-flop with PRESET and RESET

(a) (b)
Figure 3.9. Symbols for edge-triggered D Flip-flop. (a) Active-
high PRESET and CLEAR; (b) Active-low PRESET and CLEAR

Toggle Flip-Flop

Figure 3.10(a) shows a toggle flip-flop. The outputs of
this flip-flop switch or toggle with every positive
transition of the input clock. Because of the cross-
coupling between the output and the inputs, the
opposite input condition is supplied after each change
of the output. Thus, the flip-flop will toggle to the
opposite state when the next clock edge is applied to
the CLK input.

Figure 3.10(b) is a timing diagram for the toggle flip-
flop. Note that the output frequency at Q is one-half
the frequency of the CLK input. Because of this, a
toggle flip-flop is also known as a divide-by-2- flip-
flop.

(a)

(b)

Figure 3.10. (a) Toggle Flip-flop; (b) Timing Diagram

Edge-triggered JK Flip-Flops

Figure 3.11(a) shows one way to build a JK flip-flop.
As before, an RC circuit with a short time constant
converts the rectangular CLK pulse to narrow spikes.
The J and K inputs are control inputs; they determine
what the circuit will do on the positive clock edge.
When J and K are low, both inputs are disabled and the
circuit is inactive.

When J is low and K is high, the flip-flop is reset. On
the other hand, when J is high and K is low, the flip-
flop is driven into the set state on the next positive CLK

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 24

edge. The final possibility is both J and K are high. It
means the flip-flop will toggle on the next positive
clock edge. Figure 3.11(b) is a visual summary of the
action. When J is high and K is low, the rising clock
edge set Q to high. When J is low and K is high, the
rising clock edge resets Q to low. Finally, if both J and
K are high, the output toggles once each rising clock
edge.

(a)

(b)

Figure 3.11. (a) Edge Triggered JK Flip-flop; (b) Timing
Diagram

Table 3.6 summarizes the action. The circuit is
inactive when the clock is low, high, or on its negative
edge. Likewise, the circuit is inactive when J and K are
both low. Output changes occur only on the rising edge
of the clock as indicated by the last three entries of the
table. The output either resets, sets, or toggle.

Table 3.6. Positive-edge-triggered JK Flip-flop

CLK J K Q
0 X X NC
1 X X NC
↓ X X NC

X 0 0 NC
↑ 0 1 0
↑ 1 0 1
↑ 1 1 Toggle

A variety of JK flip-flops are available in IC form.
Figure 3.12(a) is the symbol for one type. It uses
positive-edge triggering, and responds to high PRESET

and CLEAR. Figure3.12(b) is a positive-edge-
triggered JK flip-flop that responds to low preset and
clear signal. If the IC design includes an internal
inverter on the clock input, we get negative-edge
triggering which is preferred in some applications. As
a reminder of this negative-edge triggering, figure
3.12(c) has a bubble at the clock input; it also has
active-low PRESET and CLEAR.

(a) (b)

(c)

Figure 3.12. Symbols for JK Flip-flop. (a) Positive Edge-

triggering with Active-high PRESET and CLEAR; (b) Positive

Edge-triggering with Active-low PRESET and CLEAR; (c)
Negative Edge-triggering with Active-low PRESET and CLEAR

SUMMARY

1. A flip-flop can remain in its last state until an
external trigger forces it into the other state.
Because of this, it is a memory element.

2. In the inactive state, a flip-flop stores or
remembers because it remains in its last state.

3. An invalid condition when both R and S are
high in an RS flip-flop. This undesirable state

is forbidden because it represents a
contradiction.

4. One way to build an RS flip-flop is with cross-
coupled NOR gates. Alternatively, NAND gates
can be used.

5. Usually, a signal called the clock determines
when a flip-flop can change states.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 25

6. By including an inverter, we can convert an RS
flip-flop into a D flip-flop. The big advantage
of the D flip-flop is the lack of an invalid
condition.

7. A positive-edge-triggered D flip-flop stores
the data bit only on the rising edge of the clock.

8. PRESET and CLEAR allow a direct set or a
direct reset of a flip-flop, regardless of what the
clock is doing.

9. A toggle flip-flop changes state with each
clock cycle and is known as a divide-by-2 flip-
flop.

10. Depending on the values of J and K, a JK flip-
flop will either do nothing, set, reset, or toggle.

SELF-TEST

1. RS flip-flops can be built with cross-coupled
_________ or _________ gates.

2. A square-wave signal called the _________
can synchronize the operation of many flip-
flops.

3. A flip-flop that responds only on the rising
_________ of the clock is called a _________.

4. The output of a toggle flip-flop is _________
the frequency of the clock input.

5. For a JK flip-flop to toggle, J must be _______
and K must be________.

---PROCEDURE--

MATERIALS REQUIRED

 AC and DC power supply +5 V

 Signal generator, oscilloscope

 ICs: 7402, 7404, 7474, 7476

 Resistors, LED, switches

RS Latch

1. Connect the NOR latch of figure 3.13!
2. Set the R and S switches to the input

combinations of table 3.7! Follow the order

shown; record the Q and Q outputs for each

input!

Table 3.7. RS Latch

R S Q Q

0 0
0 1
1 0
1 1

Figure 3.13. Experimental RS Latch

D Latch

1. Connect the clocked D latch of figure 3.14!
2. Connect a square wave generator to the CLK

input! Set the generator for 5 V at 1 KHz!
3. Set the D switch to the low input! Measure and

record Q and Q in table 3.8!

4. Repeat the preceding step for the D switch at
the high input!

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 26

5. Remove the square-wave generator and set this
input high! Observe that switching the D input
does not cause the output to switch!

Table 3.8. D Latch

D CLK Q

0 ↑
1 ↑

Figure 3.14. Clocked D Flip-flop

Edge-triggered D Flip-Flop

1. Connect the circuit of figure 3.15!
2. Close S1 and ground the CLK input. Open S2

and close S3! Note that the flip-flop is in the
reset state. Open S3, and the Q output should
remain low (green LED on).

3. Close S2 (preset), and the output Q should go
to the set condition (red LED on). Open S2, and
the flip-flop remains set.

4. Close S1 (low input)! Remove the ground to
CLK and replace it with the square-wave
generator set as in step 1 D Latch! Record the
Q output in table 3.9!

5. Open S1 (high input)! Record the Q output in
table 3.9!

Table 3.9. Edge-triggered D Flip-flop

D CLK Q

0 ↑
1 ↑

Figure 3.15. Experimental Edge-triggered D Flip-flop

JK Flip-Flop

1. Connect the circuit of figure 3.16! Set J and K
inputs low. Connect the square-wave generator
to the CLK input and set it as in step 1 D Latch
experiment!

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 27

2. Close S2 and open S4! Note how these presets
the Q output. Open S2 and close S4, placing the
J and K inputs into the reset condition!

3. Open S2 and S4! Q should not change. If this is
what happens, write ‘NC’ in table 3.10!

4. Set up the other J and K inputs listed in table
3.10! Record the Q outputs (record ‘toggle’ for
the last entry if it is working correctly)!

5. Leave both J and K high! Measure and
calculate the frequency of the Q output and
record the value here

f = ____________

Table 3.10. JK Flip-flop

J K CLK Q

0 0 ↑
0 1 ↑
1 0 ↑
1 1 ↑

Figure 3.16. Experimental Edge-triggered JK Flip-flop

QUESTIONS

1. Describe what the Q output did when you
change the R and S switches!

2. Is the D flip-flop positive- or negative-edge
triggered?

3. Describe what a D flip-flop of figure 3.15 did!
4. Describe what a D latch does!
5. Are the PRESET and CLEAR active-low or

active-high?
6. Explain the difference between the CLK and Q

output frequencies!

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 28

MODULE 4

DIGITAL ICs: COUNTERS

OBJECTIVES

1. To examine Binary counting circuits.
2. To observe Ring and Johnson counter

operations.

BASIC INFORMATION

A counter is a circuit that produces a set of unique
output combinations in relation to the number of
applied input pulses. The number of unique outputs of
a counter is known as its modulus, modulo, or mod
number.

Binary Counters

Figure 4.1 shows a binary or ripple up counter. JK flip-
flops are used because of their versatility. The J and K
inputs are all connected together to an ENABLE input.
When ENABLE is OFF (low), all the JK inputs are held
low, placing the flip-flops into a ‘no change’
condition. Once the ENABLE is set ON (high), the JK
inputs are forced high and each flip-flop is set into a
‘toggle’ condition. Each flip-flop will change state
when a positive to negative transition is experienced
on its CLK input.

Applying a square-wave signal to the clock input of
FF0 and setting ENABLE high allow FF0 to
continuously toggle each time a clock pulse is applied.

Flip-flop FF1 is clocked from the Q output of FF0, so
its output has a frequency that is one-half that of FF0

or one-fourth the frequency of the input CLK. In turn,
FF2 is driven by FF1 and its output is on-eighth that of
the CLK and the FF3 output is one-sixteenth summary
of the binary counter outputs. Figure 4.2 is a timing
diagram summary of the binary counter outputs. Note
that the output of each flip-flop toggles when a low
transition is applied to its clock input.

Flip-flop FF0 is the least-significant bit in the counting
sequence, followed in numerical weight by FF1, FF2,
and finally FF3. Assigning 1s to high outputs and 0s to
low-level outputs, one can construct a truth table
(figure 4.3). Note that the outputs change sequentially
as the number of clock cycles (count) increases. There
are 16 different output combinations or states
produced by this counter, which returns to all 0s on the
sixteenth count. This makes this a mod 16 binary
ripple up counter.

Counting Down

Switching the clock inputs of each flip-flop to the Q

outputs causes the counting sequence to start at 1111,
on the first clock after releasing the reset input, down
to 0000. The flip-flops still toggle on a positive-to-
negative transition, but this change now comes when
the Q output of the previous flip-flop (which is the

inverse of its Q) goes from a low to a high.

Figure 4.1. Binary Ripple Up Counter

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 29

Figure 4.2. Binary Up Counter Timing Diagram

Ring counters

Figure 4.4 illustrates a ring counter. It is constructed

by connecting the Q and Q outputs from one flip-flop

to the J and K inputs of the next flip-flop. To complete
the ring, the outputs of the final flip-flop are wired to
the inputs of the first flip-flop. This counter has the
characteristic that one and only one flip-flop is set
(Q=1) at any time. To start the counter, FF0 is set and
the rest are reset (note the application of the start input
to the FF0 preset input and the FF1 to FF3 reset input).
Since the outputs of each flip-flop are connected to the
inputs of the following unit, FF1 is receiving set inputs
while the others are receiving reset inputs. The effect
is that on the first clock cycle FF1 goes set while the
rest are reset. The set condition has shifted from FF0

to FF1. As clock cycles arrive, this set condition
continues to shift around the ring. The process is
illustrated in the timing diagram of figure 4.5. A truth
table is not required for this circuit because of the
exclusive nature of the single set flip-flop for each
clock cycle (count).

COUNT Q3 Q2 Q1 Q0
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1
16 1 0 0 0

Figure 4.3. Binary Up Counter Truth Table

As can be seen from the timing diagram, there are four
unique output states for this counter, rendering it a
mod 4 ring counter.

Johnson Counter

The modulo number of a ring counter can be doubled

by switching the Q and Q outputs of the last flip-flop

so that the Q output now feed the FF0 J input and Q

the K input. This is the configuration for the Johnson

Counter (figure 4.6) which is started at 0000. Note that
this condition supplies reset inputs to FF1 send set
input condition to FF0. On the first clock input, FF0
sets while the rest remain reset. Now set inputs are
applied to FF0 and FF1. The next clock input sets FF0
and FF1 while resetting FF2 and FF3. The process
continues until all four flip-flops are set as illustrated
in figure 4.7. Once all four are set, the outputs of FF3
then send reset inputs to FF0. On the succeeding
clocks, the process is reversed until the counter once
again has all reset outputs. Note from the timing
diagram that there are now eight different output
conditions causing this to be a mod 8 Johnson Counter.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 30

Figure 4.4. Ring Counter

Figure 4.5. Ring Counter Timing Diagram

Figure 4.6. Johnson Counter

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 31

Figure 4.7. Johnson Counter Timing Diagram

SUMMARY

1. Counters are digital circuits that produce different
output states for each applied clock cycle.

2. An up counter yields an increasing binary count
representation as its outputs, while a down counter
produces a decreasing count sequence.

3. Only one flip-flop is set in a ring counter. This set
condition is the shifted through the ring on
succeeding clock cycles.

4. A Johnson counter doubles the modulo number of
a ring counter without the addition of any

circuitry.

SELF-TEST

1. Which flip-flops are set in figure 4.1 after
seven clock cycles are applied following the
release of the RESET signal?

2. What is the highest binary number that could
be represented by the counter in figure 4.1 if
the CLK input to FF3 were open?

3. Which flip-flop of the ring counter in figure 4.4
is set on the 19th clock cycle after START is
released?

4. What is the state of the Johnson Counter
outputs in figure 4.6 following nineteen clock
cycles after the release of the reset signal?

---PROCEDURE--

MATERIALS REQUIRED

 Power Supply: +5 V

 Multimeter, Signal Generator, Oscilloscope

 Resistors

 ICs: 7476

 Switches, LEDs

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 32

Binary Up Counter

1. Construct the binary counter of figure 4.8!
2. Close S1 and S2! Apply a 5 Hz 5 V square wave

to the CLK input! What is the state of the
counter at this time?

3. Open S2! Explain why the output does not
change!

4. Open S1! What is the count sequence of this
counter? Does it count up or down?

5. Close S1 and S2! Move the clock inputs of each
flip-flop except FF0 from the Q outputs to the

Q outputs. Be careful to leave the 1 kΩ

resistors and LEDs connected to the Q outputs!
6. Open S1 and S2! Is the counter counting up or

down? What is the modulo number for this
counter?

Ring Counter

1. Construct the ring counter of figure 4.9!
2. Apply the 5 Hz 5 V square wave to the CLK

input!

3. Close S1! What is the state of the outputs of the
counter?

4. Open S1! Draw a timing diagram for six clock
cycles! What is the modulo number for this
counter? What would happen to the operation
of the circuit if the reset of FF0 were connected
to the start input instead of the preset? Perform
this test and verify your answer!

5. Close S1! Switch the Q and Q connections of

FF3! Keep the 1 kΩ resistor and LED
connected to the Q output! Remove the +5 V
to the reset of FF0! Move the start input to the
preset of FF0 to its reset input and connect the
preset to +5 V+! What is the state of the outputs
of the counter?

6. Open S1! Draw the timing diagram for 10 clock
cycles! What is the name and modulo number
of this counter?

Figure 4.8 Experimental Binary Up Counter

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 33

Figure 4.9. Experimental Ring Counter

QUESTIONS

1. Answer the questions listed in the procedure of
every step!

2. Explain the output differences between a
binary or ripple up counter and a ring counter!

3. How does a Johnson counter differ form a ring
counter?

4. List an advantage for each type of counter used
in this experiment!

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 34

MODULE 5

THE 555 TIMER

OBJECTIVES

1. To measure the frequency and duty cycle of an
astable 555 timer.

2. To measure the pulse width out of a monostable
555 timer.

3. To examine the signal out of a voltage-controlled
oscillator.

4. To build a sawtooth generator using a 555 timer.

BASIC INFORMATION

Basic Timing Concept

Figure 5.1 (a) illustrates some basic ideas needed in
our later discussion of the 555 timer. Assume output Q
is high. This saturates transistor and clamps the
capacitor voltage at ground. In other words, the
capacitor is short-circuited and cannot charge.

The non-inverting input voltage of the op amp is called
the threshold voltage, and the inverting input voltage
is referred to as the control voltage. With the RS flip-
flop set, the saturated transistor holds the threshold
voltage divider.

Suppose we apply a high voltage to the R input. This
resets the RS flip-flop. Output Q goes to 0 and this cuts
off the transistor. Capacitor C is now free to charge.
As the capacitor charges, the threshold voltage
increases.

(a)

(b)

Figure 5.1. Basic Timing Concept

Eventually, the threshold voltage becomes slightly
greater than the control voltage (+10 V). The output of
the op-amp then goes high, forcing the RS flip-flop to
set. The high Q output saturates the transistor and this
quickly discharges the capacitor.

Notice the two waveforms in figure 5.1(b). An
exponential rise is across the capacitor, and a positive

going pulse appears at the Q output.

555 Block Diagram

The NE555 timer introduced by Signetics is an 8-pin
IC that can be connected to external components for
either astable or monostable operation. Figure 5.2
shows a simplified block diagram. Notice the upper
op-amp has a threshold input (pin 6) and a control
input (pin 5). In most applications, the control input is
not used, so that the control voltage equals +2VCC/3
developed by the three 5 kΩ voltage divider. As
before, whenever the threshold voltage exceeds the
control voltage, the high output from the op-amp will
set the flip-flop.

The collector of the discharge transistor goes to pin 7.
When this pin is connected to and external timing
capacitor, a high Q output from the flip-flop will
saturate the transistor and discharge the capacitor.
When Q is low, the transistor opens and the capacitor
can charge as previously described.

The complementary signal out of the flip-flop goes to
pin 3, the output. When the external reset (pin 4) is
grounded, it inhibits the device (prevents it from
working). This ON-OFF feature is useful sometimes. In
most applications, however, the external reset is not
used and pin 4 is tied directly to the supply voltage.

Notice the lower op-amp. Its inverting input is called
the trigger (pin 2). Because of the voltage divider, the

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 35

non-inverting input has a fixed voltage of +VCC/3.
When the trigger input voltage is slightly less than
+VCC/3, the op-amp output goes high and resets the
flip-flop.

Finally, pin 1 is the chip ground, while pin 8 is the
supply pin. The 555 timer will work with any supply
voltage between 4.5 and 16 V.

Figure 5.2. Block Diagram of 555 Timer

Monostable Operation

Figure 5.3(a) shows the 555 timer connected for
monostable (one-shot) operation. It produces a single
fixed pulse out each time a trigger pulse is applied to
pin 2 (figure 5.3(b)). When the trigger input is slightly
less than +VCC/3, the lower op-amp has a high output
and resets the flip-flop. This cuts off the transistor,
allowing the capacitor to charge.

When the threshold voltage is slightly greater than
+2VCC/3, the upper op-amp has a high output, which
sets the flip-flop. As soon as Q goes high, it turns on
the transistor; this quickly discharges the capacitor.

The trigger input is a narrow pulse with a quiescent
value of +VCC. The pulse must drop below +VCC/3 to
reset the flip-flop sets; this saturates the transistor and
discharges the capacitor. As a result, we get one
rectangular output pulse.

The capacitor C has to charge through resistance R.
The larger the RC time constant, the longer it takes for
the capacitor voltage to reach +2VCC/3. In other words,
the RC time constant controls the width of the output
pulse. Solving the exponential equation for capacitor
voltage gives this formula for the pulse width

)(1.1 RCW 

For instance, if R = 22 kΩ and C = 0.068 µF, then the
output of the monostable 555 timer is

� = 1.1	�	22(10�)	�	0.068(10��) = 1.65	��

(a)

(b)

Figure 5.3. (a) Monostable Operation; (b) Waveforms

Normally, a schematic diagram does not show the op-
amps, flip-flop, and other components inside the 555
timer. Rather, you will see a schematic diagram like
figure 5.4 for the monostable 555 timer. Incidentally,
notice that pin 5 (control) is bypassed to ground
through a small capacitor, typically 0.01 µF. This
provides noise filtering for the control voltage.

Figure 5.4. Monostable 555 Timer

Astable Operation

Figure 5.5(a) shows the 555 timer connected for
astable or free-running operation. The output is a

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 36

square-wave signal. When Q is low, the transistor is
cut off and the capacitor is charging through a total
resistance of RA + RB. Because of this, the charging
time constant is (RA+RB)C. As the capacitor charges,
the threshold voltage increases.

Eventually, the threshold voltage exceeds +2VCC/3;
then the upper op-amp has a high output and this sets
the flip-flop. With Q high, the transistor saturates and
grounds pin 7. Now the capacitor discharges through
RB. Therefore, the discharging time constant in RBC.
When the capacitor voltage drops slightly below
+VCC/3, the lower op-amp has a high output and this
resets the flip-flop.

Figure 5.5(b) illustrates the waveforms. As you see,
the timing capacitor has an exponentially rising and
falling voltage. The output is a rectangular wave. Since
the charging time constant is longer that the
discharging time constant, the output is not
symmetrical; the high state lasts longer than the low
state.

(a)

(b)

Figure 5.5. (a) Astable Operation; (b) Waveforms

To specify how asymmetric the output is, we will use
the duty cycle defined as

� =
�

�
	�	100%

Depending on resistances RA and RB, the duty cycle is
between 50 and 100 percent.

A mathematical solution to the charging and
discharging equations gives the following formulas.
The output frequency is

� =
1.44

(�� + 2��)
	�	100%

And the duty cycle is

� = 	
(�� + ��)

(�� + 2��)
	�	100%

If RA is much smaller than RB, the duty cycle
approaches 50 percent.

Figure 5.6 shows the astable 555 timer as it usually
appears. Again notice how pin 4 (reset) is tied to the
supply voltage and how pin 5 (control) is bypassed to
ground through a 0.01 µF capacitor.

Figure 5.6. Astable 555 Timer

Voltage-Controlled Oscillator

Figure 5.7(a) shows a voltage-controlled oscillator
(VCO). Recall that pin 5 (control) connects to the
inverting input of the upper op-amp. Normally, the
control voltage is +2VCC/3 because of the internal
voltage divider. In figure 5.7(a), however, the voltage
from an external potentiometer overrides the internal
voltage. In other words, by adjusting the
potentiometer, we can change the control voltage.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 37

Figure 5.7(b) illustrates the voltage across the timing
capacitor. Note that it varies between +Vcontrol/2 and
+Vcontrol. If we increase Vcontrol, it takes the capacitor
longer to charge and discharge therefore, the
frequency decreases. As a result, we can change the
frequency of the circuit by varying the control voltage.

Incidentally, the control voltage may come from a
potentiometer or it may be the output of another
transition circuit, op-amp, and so on.

(a)

(b)

Figure 5.7. (a) Voltage-controlled Oscillator; (b) Waveform

Sawtooth Generator

A constant charging current produces linear ramp of
voltage across a capacitor. The PNP transistor of
figure 5.8(a) produces a constant charging current
equal to

�� = 	
��� ��

�

where

�� = ��� +	
��

�� + ��
���

For instance, if VCC = 15 V, R = 20 kΩ, R1 = 5 kΩ, R2
= 10 kΩ, and VBE = 0.7 V, then

�� = 0.7	� + 10	� = 10.7	�

and

�� = 	
��	����.�	�	

��	��
= 0.215	��

When a trigger starts the monostable 555 timer of
figure 5.8(a), the PNP current source forces a constant
charging current into the capacitor. Therefore, the
voltage across the capacitor is a linear ramp as shown
in figure 5.8(b). The slope S of the linear ramp is
defined as the rise over the run, or

T

V
S 

where V is the peak voltage at time. For instance, if V
= 10 V and T = 2 ms, then the slope S is 5 V/ms. This
says the ramp rises 5 V/ms.

Since the basic capacitor equation is

C

Q
V 

we can divide both sides by T to get

C

TQ

T

V /


When the charging current is constant, this reduces to

C

I
S 

In other words, you can predict the slope of a linear
ramp using the ratio of charging current to
capacitance. If the charging current is 0.215 mA
(found earlier) and the capacitance is 0.022 µF, the
ramp will have a slope of

msV
F

mA
S /77.9

µ022.0

215.0


(a)

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 38

(b)

Figure 5.8. (a) Sawtooth Generator; (b) Waveform

SUMMARY

1. A high set (S) input sets the output of an RS flip-
flop to the high state. A high Reset (S) input resets
the output to the low state.

2. In a 555 timer the non-inverting input of the upper
op-amp is called the threshold voltage; the
inverting input is called the control voltage.

3. When the threshold voltage exceeds the control
voltage, the RS flip-flop is set. This saturates the
discharge transistor.

4. The inverting input of the lower op-amp in a 555
is called the trigger.

5. When trigger voltage is less than +VCC/3, the RS
flip-flop is reset. This cuts off the discharge
transistor.

6. The 555 timer can be connected for astable and
monostable operation.

7. Normally, the control voltage of a 555 timer
equals +2VCC/3 because of the internal voltage
divider. In VCO application, however, an external
voltage is applied to the control pin override the
voltage from the internal voltage divider.

8. By using a PNP current source, the 555 timer can
produce linear amps.

SELF-TEST

1. To saturate the transistor of figure 5.2(a), the Q
output must be _______ V.

2. In figure 3.2(a), the control voltage equals
_______ V.

3. To set the RS flip-flop of figure 5.3, the threshold
voltage must be slightly greater than the
________ voltage.

4. In figure 5.5, R = 68 kΩ and C = 0.050 µF. The
pulse width of the output is ________ ms.

5. In figure 5.7, if RA = 27 kΩ, RB = 70 kΩ, and C =
0.22µF. The frequency of the output is ______ Hz
and the duty cycle is _______ percent.

--PROCEDURE--

MATERIALS REQUIRED

 Regulated AC/DC Power Supply ~ +15 V

 Oscilloscope, signal Generator

 Resistors, Capacitors, Potentiometer, Transistors

 ICs: Op-Amp 741, NE555 Timer

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 39

Astable 555 timer

1. Calculate the frequency and duty cycle in figure
5.9 for the resistances listed in table 5.1. Record
the results under fcalculated and Dcalculated!

2. Connect the circuit of figure 5.9 with RA = 10 kΩ
and RB = 100 kΩ!

3. Measure W and T. Work out the frequency and
duty factor. Record under fmeasured and Dmeasured in
table 5.1!

4. Look at the voltage across the capacitor (pin 6).
You should see an exponentially rising and falling
wave between 5 V and 10 V!

5. Repeat steps 2 through 4 for the other resistances
of table 5.1!

Figure 5.9. Experimental Astable 555 Timer

Table 5.1. Astable Operation

RA (kΩ) RB (kΩ) fcalc Dcalc fmeas Dmeas

47 100

100 47

47 47

Voltage Controlled Oscillator

1. Connect the circuit of VCO in figure 5.10!
2. Look at the output with an oscilloscope!
3. Vary the 1 kΩ potentiometer and notice what

happens. Record the maximum and minimum
frequencies of the output!

fmaximum = _____________

fminimum = _____________

Figure 5.10. Experimental Voltage-controlled Oscillator

Monostable 555 Timer

1. Figure 5.11 shows a Schmitt trigger driving
monostable 555 timer. Calculate the pulse width
for each R listed in table 5.2! Record the results
under Wcalculated!

2. Connect the circuit of figure 5.11 with an R of 33
kΩ!

3. Look at the output of the Schmitt trigger (pin 6 of
741). Set the frequency of the sine-wave input to
1 KHz.!

4. Adjust the sine-wave level until you get a Schmitt
trigger output with a duty cycle of approximately
90%!

5. Look at the output of the 555 timer and measure
the pulse width! Record this value under Wmeasured
in table 5.2!

6. Repeat steps 2-5 for the remaining values of table
5.2!

Table 5.2. Monostable Operation

R (kΩ) Wcalc Wmeas

22

33

47

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 40

Figure 5.11. Experimental Monostable Operation

Sawtooth Generator

1. Calculate the charging current in figure 5.12 for
each value of R shown in table 5.3. Record the
values!

2. Calculate the slope of capacitor voltage in
volts/milisecond. Record under Scalculaied in table
5.3!

3. Connect the circuit of figure 5.12 with an R of 10
kΩ!

4. Set the signal generator to 1 KHz of AC
frequency! Adjust the level to get a duty cycle of
approximately 90 percent out of the Schmitt
trigger!

5. Look at the output voltage! It should be a
sawtooth. Measure the ramp voltage and time!
Then, work out the slope in voltages/milisecond.
Record the value under Smeasured in table 5.3!

6. Repeat steps 3 through 5 for the remaining values
of R in table 5.3!

Table 5.3. Sawtooth Generator

R (kΩ) Icharge (mA) Scalc (V/ms) Smeas (V/ms)

10

33

47

Figure 5.12. Experimental Sawtooth Generator

QUESTIONS

1. How does the ratio of RA and RB affect the duty
cycle of an astable 555 timer?

2. What effect does R have on the sawtooth?
3. What happens to the width of the output if the

timing resistor is increased?

4. What effect does increasing the timing capacitor
have on the frequency out of an astable 555 timer?

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 41

MODULE 6
HALF ADDER, FULL ADDER, AND DECODER USING VHDL

OBJECTIVES
1. To create a new project in Vivado™ using VHDL
2. To use the provided ZYBO Master Constraint file

to constrain the pin locations
3. To design and construct Half Adder, Full Adder,

and Encoder logic using VHDL
4. To simulate, synthesize, and implement the

design
5. To program the completed design onto the ZYBO

Development Board FPGA

BASIC INFORMATIONS
Binary Number
The binary system of arithmetic uses only two symbols
(0 and 1) to represent all quantities. This system finds
wide use in computers because the 0 and 1 are easily
represented by the 2-state digital circuits.
Counting is started in the binary system in the same
way as in the decimal system with 0 for zero and 1 for
one. But at 2 in the binary system there are no more
symbols. Therefore, the same move must be taken at
two in the binary system that is taken at 10 in the
decimal system: It is necessary to place a 1 in the
position to the let and start again with a 0 in the original
position. Table 6.1 is a list of numbers shown in both
decimal and binary form.
The order of binary number is not designated unit,
tens, hundreds, thousands, and so forth, as in the
decimal system. Instead, the order is 1, 2, 4, 8, 16, 32,
and so on, reading from right to left with the position
farthest to the right being 1. Table 6.2 shows more
decimal quantities and their equivalents in binary
form. Note how the positions are numbered right to
left.

Table 6.1. Decimal and Binary Numbers

Decimal Binary Decimal Binary
0 0 6 110
1 1 7 111
2 10 8 1000
3 11 9 1001
4 100 10 1010
5 101 11 1011

These values are found by raising the base radix (2) by
an exponential value equivalent to its position in the
number. The smallest binary digit called the least
significant bit (LSB) is binary digit position 0. It has a
numerical weight of 20 = 1. The weight of the next
digit is 21 = 2, then 22 = 4, and so forth. Notice that
each position weight is twice that of the proceeding
digit.

Converting binary values to decimal is achieved by
multiplying the position weight of each digit by the
value (1 or 0) in the position. These products are added
to produce the final decimal equivalent of the original
binary number. For example, let us convert 110101 to
its decimal value. There are six binary digits with the
LSB in rightmost place. The weights of these digits
(bits) are LSB = 1 and then 2, 4, 8, and 16 and finally,
32. Thus, 1101012 = 5310. The subscript denotes the
base value of the number system used for each number
(2 for binary and 10 for decimal).

Table 6.2. Decimal Numbers and Their Binary Equivalents

Binary
Decimal 256 128 64 32 16 8 4 2 1

34 1 0 0 0 1 0
15 1 1 1 1
225 1 1 1 0 0 0 0 1
75 1 0 0 1 0 1 1

The method used to convert a decimal number to its
binary equivalent may be called divide and remainder.
Divide the original decimal value by 2, the binary bas
value. The result is a quotient and a remainder. The
remainder becomes the binary number starting with
the LSB. Divide the quotient again by 2. The
remainder is the next binary bit. The quotient result is
again divided by the base value with the remainder
becoming the third binary digit. This is repeated until
the quotient becomes 0.
Addition of binary quantities is very simple and is
based on the following three rules:

4. 0 + 0 = 0
5. 0 + 1 = 1
6. 1 + 1 = 0 with a 1 carry to the left

Table 6.3 is and example of binary addition using the
rules stated.
The factors to be added are 75 and 225. Starting at the
right, we have 1 + 1 = 0 with a 1 carry (rule 3). The
next position to the left is added: 0 + 1 = 1. 0 with 1
carried to the third position. The third position consists
of 0 + 0 = 0 + 1(carry) = 1. This procedure given in
binary form as 100101100, which is equal to 256 + 32
+ 8 + 4 = 300. This sum is exactly what we would
expect to get by adding the decimal quantities 225 and
75.
Binary quantities can also be subtracted, multiplied,
and divided, using rules similar to those for addition.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 42

Table 6.3. Adding Binary Numbers

Binary Value
Carry: 1 1 1 1
225 = 0 1 1 1 0 0 0 0 1
+75 = +0 0 1 0 0 1 0 1 1
300 = 1 0 0 1 0 1 1 0 0

Exclusive-OR Gate
Figure 6.1(a) is a schematic diagram for a special
circuit called an exclusive-OR. The Boolean expression

for this circuit is .BABAY  Table 6.4 is the truth
table for this circuit. Output Y will be high if A is low
and B is high or the reverse is true. Output Y is low
whenever the two inputs are both low or both high.
Examine table 6.4 carefully and note that the output is
in one state when the inputs agree and in another state
when they disagree. This respect allows the exclusive
OR to be used for comparing binary bit values.

Table 6.4. Exclusive-OR

A B Y

0 0 0
0 1 1
1 0 1
1 1 0

The Boolean operator for an exclusive-OR is an OR

operation (+) enclosed in a circle:  . As such,
another Boolean expression for the circuit in figure 6.1
is

BAY 
You will find many uses for this circuit which
packaged in its own IC (7486). The schematic symbol
for this gate is shown in figure 6.1(b).

Binary Half Adder and Truth Table
The simplest binary adder is called a half adder and is
capable of combining two binary numbers and
providing an output and a carry when necessary. The
first step in understanding the operation of a half adder
is to investigate the input combinations and the
resulting outputs based on the rules of binary addition.
Table 2.5 is a truth table showing these combinations.
The table shows that a binary 1 on one input with a 0
in the other (rule 2) results in a binary 1 sum and binary
0 carry. A binary 1 on both inputs results in a binary 0
sum and a binary 1 carry (rule 3). A binary 0 on both
inputs results in a binary 0 sum and binary 0 carry (rule
1).

Table 6.5. Truth Table for Half Adder

Input
Sum Carry

A B
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Consider the sum and carry as two separate truth table
results generated by the inputs A and B. Note that the
sum has generated an exclusive-OR table and the carry,
an AND result. Figure 6.2 is the schematic of the circuit
that produces this half adder truth table.

(a)

(b)

Figure 6.1. (a) Exclusive-OR; (b) Logic Schematic Symbol

The half adder has only limited use because there are
no provisions for a carry input from a previous adder.

Figure 6.2. Half Adder

Binary Full Adder and Truth Table
When a carry and the two quantities to be added are
considered as inputs, the input combinations increase
to eight as shown in table 6.6. An adder capable of
producing the required outputs for the eight input
combinations is called a full adder. The full adder is
shown in the block diagram of figure 6.3.
The full adder shown represents a single position in a
binary-adder system. Because many such adders are
combined in a large computer, each full adder is
represented as a block in the computer logic diagram.
The actual number of positions in such an adder
depends on the size of the computer and the type of
calculations the computer is designed for.

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 43

Table 6.6. Truth Table for Full Adder

Inputs Outputs

A B C Sum Carry

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 6.3. Full Adder

Binary Decoder and Truth Table
Decoder circuits are used to decode encoded
information. A binary decoder, depicted in figure 6.4,
is a logic circuit with n inputs and 2n outputs. Only one
output is asserted at a time, and each output
corresponds to one valuation of the inputs. The
decoder also has an enable input, En, that is used to
disable the outputs; if En = 0, then none of the decoder
outputs is asserted. If En = 1, the valuation of wn 1 · · ·
w1w0 determines which of the outputs is asserted.
An n-bit binary code in which exactly one of the bits
is set to 1 at a time is referred to as one-hot encoded,
meaning that the single bit that is set to 1 is deemed
to be “hot.” The outputs of a binary decoder are one-
hot encoded.

Figure 6.4. A n-to-2n binary decoder

A 2-to-4 decoder is given in figure 6.5. The two data
inputs are w1 and w0. They represent a two-bit number

that causes the decoder to assert one of the outputs y0,
. . . , y3.

(a)

(b)

Figure 6.5. (a) Graphical Symbol; (b) Logic Circuit

Although a decoder can be designed to have either
active-high or active-low outputs, in figure 6.5 active-

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 44

high outputs are assumed. Setting the inputs w1w0 to
00, 01, 10, or 11 causes the output y0, y1, y2, or y3 to be
set to 1, respectively. A graphical symbol for the
decoder is given in part (a) of the figure, and a logic
circuit is shown in part (b).

Table 6.7. Truth Table for 2-to-4 decoder

En w1 w2 y0 y1 y2 y3
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1
0 x x 0 0 0 0

---PROCEDURE---
MATERIALS REQUIRED
 ZYBO Zynq7000
 Micro-USB Power USB Cable
 Vivado™ Software
 PC/Laptop 64bit

Half Adder
1. Create a new project, give description about the

module’s definition, entity, and port that will be
used

2. Draw and design a half adder logic using VHDL.
Set the I/O definitions and constraints: input in
the switches sw0 and sw1 to a and b, and the
LEDs led0 and led1 to sum and carry

3. Elaborate and simulate the design. Verify the
schematic with the initial design’s logic

4. Simulate the design. Check the behavioural
simulation pattern

5. Synthesize, implement, and program the device.
Record the state of the output for each input
possibility

Figure 6.6. Half Adder Experiment

Table 6.8. Half Adder Value Table

Inputs Outputs
A B Sum Carry
0 0
0 1
1 0
1 1

Full Adder
1. Create a new project, give description about the

module’s definition, entity, and port that will be
used

2. Draw and design a full logic using VHDL. Set the
I/O definitions and constraints: input in the
switches sw0, sw1, and sw2 to a, b, and c, and
the LEDs led0 and led1 to sum and carry

3. Elaborate and simulate the design. Verify the
schematic with the initial design’s logic

4. Simulate the design. Check the behavioural
simulation pattern

5. Synthesize, implement, and program the device.
Record the state of the output for each input
possibility

Figure 6.7. Full Adder Experiment

Table 6.9. Full Adder Value Table

Inputs Outputs
A B C Sum Carry
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Decoder
1. Create a new project, give description about the

module’s definition, entity, and port that will be
used

2. Draw and design an encoder logic using VHDL.
Set the I/O definitions and constraints: input in
the switches sw0 and sw1 to a and b, and the

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 45

LEDs led0, led1, led2, and led3 to z0, z1, z2,
and z3

3. Elaborate and simulate the design. Verify the
schematic with the initial design’s logic

4. Simulate the design. Check the behavioural
simulation pattern

5. Synthesize, implement, and program the device.
Record the state of the output for each input
possibility

Figure 6.8. Decoder Experiment

Table 6.10. Decoder Value Table

Inputs Outputs
A B Z0 Z1 Z2 Z3
0 0
0 1
1 0
1 1

QUESTIONS
1. Use algebraic manipulation to prove that x ⊕ (x ⊕

y) = y!
2. Design a circuit that can add three unsigned four-

bit numbers. Use four-bit adders and any other
gates needed!

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 46

MODULE 7
BCD SEVEN SEGMENT USING VHDL

OBJECTIVES
1. To design and construct a BCD Seven Segment

logic using VHDL
2. To simulate, synthesize, and implement the

design
3. To program the completed design onto the ZYBO

Development Board FPGA

BASIC INFORMATIONS
Code Converters
The purpose of the decoder and encoder circuits is to
convert from one type of input encoding to a different
output encoding. For example, a 3-to-8 binary decoder
converts from a binary number on the input to a one-
hot encoding at the output. An 8-to-3 binary encoder
performs the opposite conversion.

(a)

(b)

Figure 7.1. (a) Code Converter; (b) 7-segment Display

There are many other possible types of code
converters. One common example is a BCD-to-7-
segment decoder, which converts one binary-coded
decimal (BCD) digit into information suitable for
driving a digit-oriented display. As illustrated in figure
7.1 (a), the circuit converts the BCD digit into seven
signals that are used to drive the segments in the
display. Each segment is a small light-emitting diode
(LED), which glows when driven by an electrical
signal. The segments are labelled from a to g in the
figure.
For each valuation of the inputs w3, . . . , w0, the seven
outputs are set to display the appropriate BCD digit.
Note that the last 6 rows of a complete 16-row truth
table are not shown. They represent don’t-care
conditions because they are not legal BCD codes and
will never occur in a circuit that deals with BCD data.
A circuit that implements the truth table can be derived
using synthesis techniques. Finally, we should note
that although the word decoder is traditionally used for
this circuit, a more appropriate term is code converter.
The term decoder is more appropriate for circuits that
produce one-hot encoded outputs.

Table 7.1. Truth Table for BCD Seven Segment

w3 w2 w1 w0 a b c d e f g
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1

---PROCEDURE---
MATERIALS REQUIRED
 ZYBO Zynq7000
 Micro-USB Power USB Cable
 Vivado™ Software
 PC/Laptop 64bit
 Seven Segment
 Resistors

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 47

BCD Seven Segment
1. Create a new project, give description about the

module’s definition, entity, and port that will be
used

2. Draw and design a BCD Seven Segment logic
using VHDL. Set the I/O definitions and
constraints: input in the switches sw0, sw1,
sw2, and sw3 to Ain, Bin, Cin, and Din, and the
PMODs that will be used to Aout, Bout, Cout,
Dout, Eout, Fout, and Gout

3. Elaborate and simulate the design. Verify the
schematic with the initial design’s logic

4. Simulate the design. Check the behavioural
simulation pattern

5. Connect the PMODs to the Seven Segment
with the resistors, depending on the Seven
Segment that will be used (common cathode or
common anode)

6. Synthesize, implement, and program the device.
Record the state of the output for each input
possibility

Table 7.2. BCD Seven Segment Value Table

Inputs Outputs
Ain Bin Cin Din Aout Bout Cout Dout Eout Fout Gout Value

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1

Figure 7.2. BCD Seven Segment Experiment

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 48

QUESTIONS
1. Write VHDL code for a BCD-to-7-segment code

converter, using a selected signal assignment in
table 7.1!

2. Derive minimal sum-of-products expressions for
the outputs a, b, and c of the 7-segment display in
figure 7.1!

3. Derive minimal sum-of-products expressions for
the outputs d, e, f, and g of the 7-segment display
in figure 7.1!

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 49

MODULE 8
SEQUENTIAL BCD COUNTER USING VHDL

OBJECTIVES
1. To design and construct a Sequential BCD

Counter logic using VHDL
2. To simulate, synthesize, and implement the

design
3. To program the completed design onto the ZYBO

Development Board FPGA

BASIC INFORMATION
BCD Counter
Binary-coded-decimal (BCD) counters can be
designed using the approach reset synchronization. A
two-digit BCD counter is presented in figure 8.1. It
consists of two modulo-10 counters, one for each BCD
digit. Note that in a modulo-10 counter it is necessary
to reset the four flip-flops after the count of 9 has been
obtained. Thus the Load input to each stage is equal to
1 when Q3 = Q0 = 1, which causes 0s to be loaded into
the flip-flops at the next positive edge of the clock
signal. Whenever the count in stage 0, BCD0, reaches
9 it is necessary to enable the second stage so that it
will be incremented when the next clock pulse arrives.
This is accomplished by keeping the Enable signal for
BCD1 low at all times except when BCD0 = 9.

In practice, it has to be possible to clear the contents of
the counter by activating some control signal. Two OR
gates are included in the circuit for this purpose. The
control input Clear can be used to load 0s into the
counter. Observe that in this case Clear is active when
high.

Figure 8.1. A two-digit BCD Counter

In any digital system there is usually one or more clock
signals used to drive all synchronous circuitry. In the
preceding counter, as well as in all counters presented
in the previous figures, we have assumed that the
objective is to count the number of clock pulses. Of
course, these counters can be used to count the number
of pulses in any signal that may be used in place of the
clock signal.

---PROCEDURE--
MATERIALS REQUIRED

 ZYBO Zynq7000
 Micro-USB Power USB Cable
 Vivado™ Software
 PC/Laptop 64bit
 Seven Segment
 Resistors

Sequential BCD Counter
1. Create a new project, give description about the

module’s definition, entity, and port that will be
used

2. Draw and design a Sequential BCD Counter logic
using VHDL. Set the I/O definitions and
constraints: input in the switch sw0 to enable,
button button0, button1, and button2, to rst,
up, and down, and the LEDs led0, led1, led2,
and led3 to q0, q1, q2, and q3

3. Elaborate and simulate the design. Verify the
schematic with the initial design’s logic

4. Simulate the design. Check the behavioural
simulation pattern

5. Synthesize, implement, and program the device.
Record the state of the output for each input
possibility

6. Change the output from LEDs to Seven
Segment and reprogram the VHDL, I/O

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 50

definitions, and constraints accordingly. Rerun
the procedure from step 3 to 5.

Figure 8.2. Sequential BCD Counter Experiment

QUESTIONS
1. A digital control circuit has three inputs: Start,

Stop and Clock, as well as an output signal Run.
The Start and Stop signals are of indeterminate
duration and may span many clock cycles. When
the Start signal goes to 1, the circuit must generate
Run = 1. The Run signal must remain high until the
Stop signal goes to 1, at which time it has to return
to 0. All changes in the Run signal must be
synchronized with the Clock signal
a. Design the desired control circuit
b. Write VHDL code that specifies the desired

circuit

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 51

MODULE 9
STATE MACHINE USING VHDL

OBJECTIVES
1. To learn about the concept of state machine and

it’s design techniques
2. To design and construct a Traffic Light Controller

logic using VHDL
3. To simulate, synthesize, and implement the

design
4. To program the completed design onto the ZYBO

Development Board FPGA

BASIC INFORMATION
State Machine
In this experiment we deal with a general class of
circuits in which the outputs depend on the past
behaviour of the circuit, as well as on the present
values of inputs. They are called sequential circuits. In
most cases a clock signal is used to control the
operation of a sequential circuit; such a circuit is called
a synchronous sequential circuit. The alternative, in
which no clock signal is used, is called an
asynchronous sequential circuit. Synchronous circuits
are easier to design and are used in a vast majority of
practical applications.
Synchronous sequential circuits are realized using
combinational logic and one or more flip-flops. The
general structure of such a circuit is shown in figure
9.1. The circuit has a set of primary inputs, W, and
produces a set of outputs, Z. The values of the outputs
of the flip-flops are referred to as the state, Q, of the
circuit. Under control of the clock signal, the flip-flop
outputs change their state as determined by the
combinational logic that feeds the inputs of these flip-
flops. Thus the circuit moves from one state to another.
To ensure that only one transition from one state to
another takes place during one clock cycle, the flip-
flops have to be of the edge-triggered type. They can
be triggered either by the positive (0 to 1 transition) or
by the negative (1 to 0 transition) edge of the clock.
We will use the term active clock edge to refer to the
clock edge that causes the change in state.
The combinational logic that provides the input signals
to the flip-flops derives its inputs from two sources:
the primary inputs, W, and the present (current)
outputs of the flip-flops, Q. Thus changes in state
depend on both the present state and the values of the
primary inputs.

Figure 9.1. The general form of a sequential circuit

Figure 9.1 indicates that the outputs of the sequential
circuit are generated by another combinational circuit,
such that the outputs are a function of the present state
of the flip-flops and of the primary inputs. Although
the outputs always depend on the present state, they do
not necessarily have to depend directly on the primary
inputs. Thus the connection show in blue in the figure
may or may not exist. To distinguish between these
two possibilities, it is customary to say that sequential
circuits whose outputs depend only on the state of the
circuit are of Moore type, while those whose outputs
depend on both the state and the primary inputs are of
Mealy type. These names are in honour of Edward
Moore and George Mealy, who investigated the
behaviour of such circuits in the 1950s.
Sequential circuits are also called finite state machines
(FSMs), which is a more formal name that is often
found in technical literature. The name derives from
the fact that the functional behaviour of these circuits
can be represented using a finite number of states. In
this chapter we will often use the term finite state
machine, or simply machine, when referring to
sequential circuits.

Table 9.1. Sequences of input and output signals
Clock cycle t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

w 0 1 0 1 1 0 1 1 1 0 1
z 0 0 0 0 0 1 0 0 1 1 0

The first step in designing a finite state machine is to
determine how many states are needed and which
transitions are possible from one state to another.
There is no set procedure for this task. The designer
must think carefully about what the machine has to
accomplish. A good way to begin is to select one
particular state as a starting state; this is the state that
the circuit should enter when power is first turned on
or when a reset signal is applied. For our example let
us assume that the starting state is called state A. As
long as the input w is 0, the circuit need not do
anything, and so each active clock edge should result
in the circuit remaining in state A. When w becomes
equal to 1, the machine should recognize this, and

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 52

move to a different state, which we will call state B.
This transition takes place on the next active clock
edge after w has become equal to 1. In state B, as in
state A, the circuit should keep the value of output z at
0, because it has not yet seen w = 1 for two consecutive
clock cycles. When in state B, if w is 0 at the next
active clock edge, the circuit should move back to state
A. However, if w = 1 when in state B, the circuit should
change to a third state, called C, and it should then
generate an output z = 1. The circuit should remain in
state C as long as w = 1 and should continue to
maintain z = 1. When w becomes 0, the machine
should move back to state A. Since the preceding
description handles all possible values of input w that
the machine can encounter in its various states, we can
conclude that three states are needed to implement the
desired machine.
Now that we have determined in an informal way the
possible transitions between states, we will describe a
more formal procedure that can be used to design the
corresponding sequential circuit. Behaviour of a
sequential circuit can be described in several different
ways. The conceptually simplest method is to use a
pictorial representation in the form of a state diagram,
which is a graph that depicts states of the circuit as
nodes (circles) and transitions between states as
directed arcs. The state diagram in figure 9.2 defines
the behaviour that corresponds to our specification.
States A, B, and C appear as nodes in the diagram.
Node A represents the starting state, and it is also the
state that the circuit will reach after an input w = 0 is
applied. In this state the output z should be 0, which is
indicated as A/z=0 in the node. The circuit should
remain in state A as long as w = 0, which is indicated
by an arc with a label w = 0 that originates and
terminates at this node. The first occurrence of w = 1
(following the condition w = 0) is recorded by moving
from state A to state B. This transition is indicated on
the graph by an arc originating at A and terminating at
B. The label w = 1 on this arc denotes the input value

that causes the transition. In state B the output remains
at 0, which is indicated as B/z=0 in the node.

Figure 9.2. State diagram of a simple sequential circuit

When the circuit is in state B, it will change to state C
if w is still equal to 1 at the next active clock edge. In
state C the output z becomes equal to 1. If w stays at 1
during subsequent clock cycles, the circuit will remain
in state C maintaining z = 1. However, if w becomes 0
when the circuit is either in state B or in state C, the
next active clock edge will cause a transition to state A
to take place.
In the diagram, we indicated that the Reset input is
used to force the circuit into state A, which is possible
regardless of what state the circuit happens to be in.
We could treat Reset as just another input to the circuit,
and show a transition from each state to the starting
state A under control of the input Reset. This would
complicate the diagram unnecessarily. States in a finite
state machine are implemented using flip-flops. Since
flip-flops usually
have reset capability, we can assume that the Reset
input is used to clear all flip-flops to 0 by using this
capability. We will indicate this as shown in figure 8.2
to keep the diagrams as simple as possible

---PROCEDURE--
MATERIALS REQUIRED

 ZYBO Zynq7000
 Micro-USB Power USB Cable
 Vivado™ Software
 PC/Laptop 64bit
 Resistors
 2 Green LEDs, 2 Yellow LEDs, 3 Red LEDs, and 1 White LED

State Machine
1. Draw and design a state graph for the Traffic

Light Controller, then convert the state graph to a

State Machine Chart. State transitions will
automatically occur after the specified delay time.

2. Create a new project, give description about the
module’s definition, entity, and port that will be
used

Lab. Elektronika, Dept. Fisika, FMIPA UI © 2018 53

3. Design the Traffic Light Controller logic using
VHDL. Set the I/O definitions and constraints:
input in the button button0 and button1 to rst
and mode, and the PMODs for all of the LEDs
that will be used (Green, Yellow, Red, and
White)

4. Elaborate and simulate the design. Verify the
schematic with the initial design’s logic

5. Simulate the design. Check the behavioural
simulation pattern

6. Construct the circuit using the provided LEDs,
resistors, and a breadboard. Connect the
circuit to the PMODs using jumpers/wires,
according to the constraints

7. Synthesize, implement, and program the device.
Record the state of the output for each input
possibility

Figure 9.3. Traffic Light Diagram

Table 9.2. Traffic Light Sequences
Street A Street B Street C

Green Red Red
Yellow Red Red

Red Green Red
Red Yellow Red
Red Red White
Red Red Red

Table 9.3. Traffic Light Sequences Timing
Street A Street B Pedestrian

Green - 4 sec Green - 3 sec White - 2 sec
Yellow - 2 sec Yellow - 1 sec Red - flashes 4

seconds at 1Hz, then
solid 10 sec

Red - 10 sec Red - 12 sec

Notes:
 Traffic light A should consist of 3 lights: Green (Ga),

Yellow (Ya), and Red (Ra)
 Traffic Light B should consist of 3 lights: Green (Gb),

Yellow (Yb), and Red (Rb)
 The Pedestrian Crossing should consist of 2 lights:

White (Ww), and Red (Rw)
 A Maintenance Mode will also be implemented. When

Maintenance Mode is active, all three lights (R, Y, G)
for each traffic light (A, B, P) should flash at 1Hz.

 When Maintenance Mode is switched off, all lights
should reset to the starting mode of (Ga, Rb, Rw)

QUESTIONS
1. An FSM is defined by the state-assigned table

in figure 9.1. Derive a circuit that realizes this
FSM using D flip-flops!

2. Derive a circuit that realizes the FSM defined
by the state-assigned table in figure 9.1 using
JK flip-flops!

Table 9.4. State-assigned table for problems 1 and 2

Present State
y2 y1

Next State
Output

z
w = 0 w = 1
Y2Y1 Y2Y1

0 0 1 0 1 1 0
0 1 0 1 0 0 0
1 0 1 1 0 0 0
1 1 1 0 0 1 1

3. A sequential circuit has two inputs, w1 and w2,
and an output, z. Its function is to compare the
input sequences on the two inputs. If w1 = w2
during any four consecutive clock cycles, the
circuit produces z = 1; otherwise, z = 0. For
example

w1 0110111000110
w2 1110101000111
z 0000100001110

Derive a suitable circuit!

